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Foreword

Research on Gravitation, Astrophysics, and Cosmology in Argentina and Brazil has reached a
substantial degree of development. However, the interaction between groups of both countries
working in these areas is still not strong enough to undertake long-term, successful joint research
programs. The series of Argentinian-Brazilian Meetings on Gravitation, Astrophysics, and
Cosmology was started with the goal of stimulating this kind of collaboration.
The second meeting of the series was successfully held in Buenos Aires, Argentina, in April
2014, with the attendance of more than a hundred researchers and students from both countries.
It aimed at strengthening the links between both communities, and increasing the number of
researchers and students involved in the discussions. The presentations offered an up-to-date
picture of the research lines of both communities, and explored particularly the applications
of the binational project Long Latin American Millimeter Array (LLAMA) in the fields of
Astrophysics and Cosmology.
The present volume contains the set of invited and contributed papers presented at the meeting.
It is our hope that it would stimulate the collaboration between researchers and groups in both
countries.

Leonardo J. Pellizza
La Plata, Argentina, November 2015
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Shape of black holes

María Eugenia Gabach Clement

FaMAF-UNC, IFEG CONICET, Córdoba, Argentina

Abstract. It is well known that celestial bodies tend to be spherical due to
gravity and that rotation produces deviations from this sphericity. We discuss
what is known and expected about the shape of black holes’ horizons from their
formation to their final, stationary state. We present some recent results showing
that black hole rotation indeed manifests in the widening of their central regions,
limits their global shapes and enforces their whole geometry to be close to the
extreme Kerr horizon geometry at almost maximal rotation speed. The results
depend only on the horizon area and angular momentum. In particular they are
entirely independent of the surrounding geometry of the spacetime and of the
presence of matter satisfying the strong energy condition. We also discuss the
the relation of this result with the Hoop conjecture.

1. Introduction

This article is inspired by and based on a recent article [Gab2013] by MEGC and Martin
Reiris. We refer the reader to [Gab2013] for further discussions and technical details.

The problem we wish to address is how to describe and characterize the shape of
black holes. By this we mean the shape of their horizons, how we can measure it, what
the restrictions on it are, if there are any, and how some physical parameters affect and
determine this shape.

This problem has three important roots that we would like to refer to: the first
one is the connection between the shape of a black hole and the shape of the matter
configuration that collapsed to form it. If general black holes were close to spherical,
what would that say about highly non- spherical collapse? One possibility would be that
the deformations away from sphericity were in a sense, lost during the collapse that leads
to the black hole. Another possibility would be that non-spherical configurations would
not collapse into a black hole at all, resulting in naked singularities or other compact
configurations instead. In this sense, the allowed shapes of black holes might shed light
into this very complicated collapse scenarios. The second root of the problem is the
relation with the uniqueness theorems for the Kerr black hole and the basic questions
here are the following. Are generic black hole solutions really that different from the
Kerr black holes? Do they share any important property? Do they look similar in shape?
The final point we want to remark is the connection between Newton’s predictions on
the shape of (non-relativistic) objects, with those of general relativity on black holes.
We know that for small velocities and weak fields, general relativity reduces to Newton’s
gravitation. There are many relativistic phenomena that get lost in the Newtonian limit
and we would like to understand if some of them manifest though the shape of black
holes but are absent in the shape of “Newtonian” objects.

3



4 María Eugenia Gabach Clement

We will discuss these issues with a bit more detail through this article and a good
place to start is to take a look at objects that are more accessible to us than black holes,
i.e. stars and planets.

To a first approximation, celestial objects are spherical. The main reason for this
is gravity, one expects that when enough mass is gathered close together, the resultant
gravity will pull equally in all directions. Then, if there were no other effects present,
the resulting shape would be a perfect sphere. But clearly this is not the case, as there
are other ingredients involved, like the mass of the object, its rotation, the material it is
made of, the magnetic fields, the surrounding fields and bodies. And these all combine
to produce the different shapes we see in the sky.

Of all these deformations away from sphericity, maybe the most common and easy
to measure is a flattening due to rotation, resulting in configurations that become ever
more oblate for increasingly rapid rotation. This effect, that we observe in the Sun,
the Earth and most celestial bodies, can be described using Newtonian physics, with
General Relativity playing no role.

The natural questions are then: can we expect the same behavior for black holes,
the paradigm of relativistic objects? How do they look like?

As black holes can not be directly seen, the fine aspects of the shape of these
objects can not be easily extracted from the images obtained by telescopes. Therefore,
we resort to theoretical models of realistic black holes.

2. A model for realistic black holes

One of the most used models to represent real black holes is the solution of Einstein’s
equations found by Kerr [Ker1963]. It is stationary, vacuum, axisymmetric and asymp-
totically flat. It is characterized by two parameters, usually taken to be the total ADM
mass m and total angular momentum J. For different values of these two parameters,
we get completely different spacetimes. When |J | > m2 we find a naked singularity.
But when J ≤ m2 it gives a stationary, rotating black hole. Within the Kerr black hole
family, when the angular momentum attains its maximum allowed value, |J | = m2, the
resulting black hole is called extreme Kerr black hole. The opposite case, that is, when
the angular momentum is zero, leads to a static solution, the Schwarzschild black hole.

All through this article, we will refer to the Kerr black hole, with |J | ≤ m2, no
naked singularities will be considered.

The location and properties of Kerr horizon can be easily read out from the explicit
form of the metric (see, for instance, [Wal1984]). One can check that none of the
rotating Kerr-horizons are exactly metrical spheroids.

Moreover, the Kerr black holes satisfy

8π |J | ≤ A (1)

where A is the horizon area. This inequality is relevant for the horizon description as it
involves only quasi-local quantities that can be defined on the black hole horizon. Note
that the equality in (1) corresponds to the extreme Kerr black hole, with |J | = m2 =
A/(8π). Therefore, for fixed area, the extreme Kerr black hole is the one that spins the
fastest (within the family).

The problem of measuring the shape of Kerr’s horizon and the deformations away
from sphericity can be approached by computing the flattening coefficient due to rotation.



Shape of black holes 5

����������	
�

��

����������������

����

������������

���

�
�

�
�

Figure 1. Schematic representation of Kerr black hole horizons for equal
values of mass and different values of the angular momentum. Also displayed
are the quantities Cp and Ce for the Schwarzschild case. As the angular
momentum increases from zero (Schwarzschild black hole) to the maximum
value |J | = m2 (extreme Kerr black hole) the horizon becomes ever more
oblate.

It is defined as

f := 1 − Cp

Ce
(2)

where Cp, and Ce are respectively the lengths of the polar circle, that measures twice
the distance between the poles, and the equatorial circle, which is the greatest circle
normal to the symmetry axis, see Figure 1.

For the Kerr family we find, by explicit computation, that 0 ≤ f ≤0.36, and
it increases as the angular momentum increases (or the area decreases), which is in
agreement with what is observed in stars and planets. The fastest the rotation, or
the smaller the object, the strongest the flattening. When there is no rotation at all
(Schwarzschild black hole), the horizon is spherically symmetric, with zero flattening.
Moreover, to the maximum value of J corresponds the maximum flattening value,
f = 0.36, which is achieved by the extreme Kerr black hole. Keep in mind that a value
of unity would mean a deformation to a disk.

To make contact with non-relativistic celestial bodies, note that the Sun has
f ∼ 10−5 and the Achernar star, the most flattened star known so far, has f = 0.17
[Dom2003]. Quite remarkably, this last value coincides with the flattening of a Kerr
black hole with J ∼ 0.88m2.

The above description shows that the Kerr family presents roughly a similar con-
nection between rotation and flattening as most celestial bodies. But what about more
general black holes? Especially black holes that are not vacuum, stationary or axisym-
metric like Kerr. Is the Kerr solution really that relevant in this more general scenario?
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In the next section we will see that Kerr black holes indeed turn out to be fundamental
in the evolution of more complex black holes and play a key role there.

3. The final state

Consider a spinning, very massive object that is collapsing to form a black hole. Inde-
pendently of the very complicated and dynamical process that takes place, the “black
hole uniqueness theorem” say that once the dust has settled, and the system has calmed
down, the final black hole is simple [Bar1973-Chr1994]. It can be completely described
in terms of a few parameters: the total mass, angular momentum and the electric charge
of the black hole. Once these parameters are chosen, the system is determined com-
pletely. This striking property of black holes has been popularized as “the no-hair
theorem” by Wheeler. The name alludes to the fact that only very few parameters are
needed to describe those solutions, apart from the values of those parameters, black
holes have no distinguishing characteristics (no “hair”).

How do black holes become so simple? The answer is gravitational waves. In
general relativity, gravitational radiation escaping to infinity or to the interior of a black
hole carry almost all the complicated features present during the dynamical evolution
stage. The gravitational field radiates away everything that can be radiated away, and
the final stationary black hole is Kerr black hole, or its Kerr-Newman generalization
when non- vanishing electric charge is considered [Chr2012].

In summary, the uniqueness theorems give us detailed information about the final
black hole and therefore, about the shape of its horizon, namely, the final shape will
be that of a member of Kerr family. But what about the beginnings? Right before the
collapse? And during the middle, dynamical stage? What do we know about black
hole’s shape then?

4. The initial state

One of the first results dealing with shapes and black holes is the Hoop conjecture,
formulated by Thorne in 1972 [Tho1972]. It reads “Horizons form when and only when
a mass m gets compacted onto a region whose circumference in every direction is less
than or equal to 4πm”. According to this conjecture, the circumference around the
region must be bounded in every direction, and hence, a thin but long body of given
mass would not necessarily evolve to form a horizon.

In principle, this conjecture talks about collapsing bodies, and not black holes.
But if it were true, one would naively expect black holes not to be very elongated, but
localized in every direction, like the matter configuration they collapsed from.

Unfortunately, the impreciseness of Thorne’s statement had made this heuristic
conjecture difficult to state, approach and prove. Since its formulation there has been
a great amount of work making the idea more precise and attempting to establish its
correctness or otherwise [Sch1983-Sen2008-Gib2009].

The main problems with the original formulation of the Hoop conjecture can be
summarized as follows: in practice, it is impossible to determine the existence of an
event horizon, a global concept accessible only to omniscient observers. A remedy
has been the use of alternative, local, definitions of horizons, mainly apparent horizons
or closed marginally trapped surfaces. Another major problem is the notion of mass
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encircled by a hoop, which does not have a solution already in Newtonian physics.
There is no notion of region encircled by a hoop. In fact, one can pass arbitrarily small
hoops around any concentration of matter by letting appropriate portions of the hoop
move relativistically. Finally, the uncertainty about the numeric constants to be used in
the conjecture, several possibilities have appeared in the literature.

Yet, despite all difficulties, the Hoop Conjecture has been successful. It was
settled in spherical symmetry, and discussed in some special non-spherical cases. Many
numerical and/or analytical idealized examples have given it robust support. The
problems in the original formulation and the subsequent studies have not only given
insight as to what to expect at the initial stage in the black hole evolution, but also
inspired and guided the technical aspects in the study of shape of black holes.

In 2013, Gabach Clement and Reiris study the shape of dynamical, axisymmetric,
rotating black holes and use measures solely in terms of the area and angular momentum
of the black hole horizon.

5. Dynamical stage

We discuss here some of what is known and the expectation about the properties of the
shape of black hole horizons in the middle stage, namely, after the black hole formation
and before the stationary, final phase.

There are two fundamental issues one must resolve in order to describe the shape
of a black hole. First is how one will represent the black hole horizon, and second,
how its shape will be measured. As to the first issue, apparent horizons or marginally
outer trapped surfaces have been the preferred choice during the last years [And2008,
And2009]. As to the measures of shape, one possibility is to find a background,
well known configuration to compare with. Another possibility would be to construct
coefficients, like the flattening mentioned in connection with the Kerr back hole that
give an intrinsic notion of deformation. Finding a well defined and practical notion
is an important and complicated point that, as we will show in Section 5.1., has a
straightforward solution in axial symmetry.

Gibbons [Gib2009-Gib2012] considers apparent horizons as representations of
black hole horizons and studies two measures of shape: the length of the shortest non
trivial closed geodesic ℓ and the Birkhoff’s invariant β. Remarkably he finds that if the
surface admits an antipodal isometry and that Penrose inequality holds, then ℓ ≤ 4πm.
Gibbons goes further and conjectures that ℓ ≤ β ≤ 4πm hold in the general case,
without antipodal symmetry.

5.1. Axial symmetry
Gabach Clement and Reiris [Gab2013] study axially symmetric black holes and rep-
resent their horizons by stable marginally outermost trapped surfaces. These surfaces
are such that the outgoing null expansion is zero. The stability property is crucial and
plays a central role in many features of black-holes, in particular, the horizon’s shape.
In axial symmetry the study of shape of the horizon is somewhat simplified because
the symmetry axis defines two meaningful hoops on the surface. One is given by the
greatest meridian and the other, by the great circle or greatest axisymmetric orbit, see
Figure 2. In analogy with the analysis for Kerr black hole, denote the lengths of these
curves by Ce and Cp respectively
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Figure 2. Schematic representation of an axisymmetric black hole hori-
zons, together with the great circle of length Ce and the polar circle of length
Cp (image partly taken from [Gab2013]).

In rotating, axially symmetric black holes, the extreme Kerr black hole plays a key
role. This can be in part seen from the following inequality

8π |J | ≤ A (3)

valid for all dynamical, axially symmetric black holes [Hen2008, Ace2011, Dai2011,
Jar2011, Gab2013a]. Note that (3) looks exactly the same as the inequality (1) we
described for the Kerr family. Moreover, the extreme Kerr black hole saturates (3)
among axially symmetric black holes. Therefore one can think of this black hole as the
smallest one for a given angular momentum, or the most rapidly rotating one for given
size. These observations suggest that extreme Kerr black hole may be a good candidate
to compare the shape of a general black hole with.

The study of the shape of black holes in [Gab2013] is done through the comparison
with extreme Kerr black hole and the estimation of the horizon’s lengths Cp,Ce and the
flattening coefficient f . The main results of that article are discussed below.

Bounds on Ce,Cp and f .
The most noticeable effect of rotation is a thickening of the bulk of the horizons.

More precisely, the length Ce of the great circle is subject to the lower bounds

16π |J |2
A

≤ 8|J |
δ +
√
δ2 + 4

≤
(

Ce

2π

)2
, (4)

where

δ = 2

√( A
8π |J |

)2
− 1. (5)
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These formulae say that rotation imposes a minimum (non-zero) value for the length
of the greatest circle. For a given angular momentum, the horizon can not be too thin,
but it gets thickened perpendicular to the rotation axis. Nevertheless they do not say
whether the greatest circle lies in the “middle region” of the horizon or “near the poles”,
nor does it say anything about the size of other axisymmetric circles.

On the other hand, there is an upper bound on the length of the great circle, given
by

(
Ce

2π

)2
≤ 4|J | δ +

√
δ2 + 4
2

≤ A
π

(6)

showing that ultimately, the area controls the maximum size of the great circle. Note
that for a perfect sphere,

(
Ce

2π

)2
= A/(4π), and more importantly, for extreme Kerr black

hole,
(
Ce

2π

)2
= A/(2π), giving a factor of 2 with the right hand side of (6).

Putting (4) and (6) together, one sees that they coincide when δ = 0 at Ce/2π =
2
√|J | which is the value for the extreme Kerr horizon. This is not a coincidence and

will be discussed below.
The final relation that is presented, is connected with the flattening factor f and

reads

f := 1 − Cp

Ce
≤ 1 − 1√

2π
∼ 0.77 (7)

which shows that stable rotating horizons of a given area A and angular momentum
J , 0, cannot be arbitrarily oblate or “thick”. Let us pause a moment to analyze this
bound. Recall that the extreme Kerr black hole has feKerr = 0.36 which is roughly
half right hand side of (7). As extreme Kerr black hole is the black hole that, given
the horizon area, rotates the fastest (because it is the only axisymmetric solution that
saturates the bound (3)), then one would expect that it is the most flattened black hole.
Therefore, naively we expect f ≤ feKerr for all axisymmetric black holes. Nevertheless,
we get twice that value in (7), which leaves room to improve.

Rotational stabilization. Rotation stabilizes the shape of stable horizons in such a
way that for given A and J their entire shapes are controlled (not just Cp or Ce).

‖g − geKerr ‖C0 ≤ F (δ) (8)

for a certain finite function F (δ), where g is the 2-metric on the horizon, geKerr is the
2-metric on the extreme Kerr horizon with angular momentum J and δ was defined
in (5). In [Gab2013] it is shown that not only the metric (and therefore, the whole
geometry of the horizon) is controlled in that way, but also the rotational potential are
completely controlled by A and J , 0. It also shows that stable holes with A/8π |J |
close to one must be close to the extreme Kerr horizon.

Enforced shaping
At very high rotations all the geometry of the horizon tends to that of the extreme

Kerr horizon, regardless of the presence of any type of matter, as long as it satisfies the
Strong Energy Condition:
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Hoop like inequality.
The following result makes contact with Thorne’s Hoop conjecture. Consider

a stable, axisymmetric, outermost minimal surface1 on a maximal axisymmetric and
asymptotically flat initial data for Einstein equations. Matter satisfying the strong
energy condition is also allowed. Then, assuming that Penrose inequality 16πm2 ≥ A
[Mar2009] holds, it is deduced that the length of the great circle of the minimal surface
satisfies

Ce ≤ 8πm, (9)
where m is the ADM mass.

Note that again, there is a factor of 2 (as in (7)) on the right hand side with respect
to the Thorne conjectured value of 4πm.

Finally, regarding Gibbons’ conjecture on the Birkhoff’s invariant mentioned ear-
lier, β ≤ 4πm, using the above results, in [Gab2013] it is proved that for axisymmetric
outermost minimal spheres one has β ≤ Ce and therefore from (9), β ≤ 8πm. Whether
8π instead of Gibbon’s 4π is the right coefficient for m is not known. Nevertheless,
the 8π factor in (9) is not sharp. If one expects the Penrose inequality to hold also for
apparent horizons, then the argument before would work the same and one would obtain
Ce ≤ 8πm as well.

6. Final comments

There are many open problems that still need attention.
Regarding the Hoop conjecture, there have been works on establishing a precise

formulation and extensions to other theories, higher dimensions and special spacetimes
[Sen2008-Yos2008-Gib2009-Khu2009-Yoo2010-Muj2012], nevertheless, a clear and
general statement and proof is lacking.

With respect to the shape of black holes, one would like to take into account other
ingredients like matter content and type and the influence of magnetic fields. Another
issue of great relevance is the condition of axial symmetry imposed in [Gab2013]. In
the absence of this symmetry, as we mentioned before, the measures of shape and the
study of the horizon geometry become much more complicated, as is manifest in the
work of Gibbons [Gib2012]. But even within axial symmetry, as it was mentioned,
there is still room for improvement in the bounds found in [Gab2013].

Finally, it would be interesting to analyze what general relativity has to say about
the shape of material objects, instead of black holes, in the spirit of [Sch1983].

Acknowledgments. It is a pleasure to thank the organizers of the Gravitation,
Relativistic Astrophysics and Cosmology Second Argentinian-Brazilian Meeting that
took place in Buenos Aires in April 2014 for their kind invitation and hospitality.
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Abstract. We present some new geometries with spheroidal symmetry, with
and without mass, that involve new kind of energy momentum tensors, and
which are suitable for the description of dark matter phenomena.

1. Introduction

The standard characterization of dark matter phenomena is through models that assume
the generally accepted cold dark matter model. However, when studying dark matter
phenomena with different techniques one often finds non-trivial disagreement among
the measurements.

Notably, when estimating the matter content in a region using gravitational weak
lensing effects and dynamical studies, the different techniques do not coincide (Serra &
Romero 2011) in the estimated value.

These problems might be related to the way in which one normally deals with
inhomogeneities in cosmology. We will comment briefly on the inherent problems
involved in the notion of averaging of tensors; that contribute to unexpected terms in
the energy momentum tensor.

In a previous study of weak lensing we have noticed that a spacelike contribution of
the energy-momentum tensor has been neglected (Gallo & Moreschi 2011) in previous
works. This is the source of inspiration for the suggestion of a family of solutions with
a nontrivial contribution to the geometry but with less requirement of mass content. In
the past we have presented static spherically symmetric solutions (Gallo & Moreschi
2012); in this case we generalize to spheroidal symmetry,

We present some new geometries that involve new kind of energy momentum
tensors which are suitable for the description of dark matter phenomena.

1.1. What could be missing from the standard picture?
The problem with implicit averages: In a simple cosmological model one can consider
a Universe made out of small pieces of matter distributed in corresponding islands. If a
photon would reach us from one of those bodies it would feel: a vanishing Ricci tensor
and a non-vanishing Weyl tensor, namely:

Rab = 0 , W d
abc , 0.

While in a smooth averaged description, one would have the contrary, that is: a non-
vanishing Ricci tensor and a vanishing Weyl tensor:

Rab , 0 , W d
abc = 0;

13
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as is the case in the Robertson-Walker spacetimes.
One normally thinks that the Robertson-Walker spacetimes are a good model for

the large scale structure of the Universe in which the small scales inhomogeneities are
smooth out in some kind of averaging process. However, there is no notion of average
that coming from a zero tensor would produce a non-zero average. As is the case with
the Ricci tensor as mention above.

The standard approach to weak lenses: In standard textbooks, such as Gravitational
lenses (Schneider, Ehlers & Falco 1992), one finds that the deflection angle is expressed
by:

α̂(~ξ) =
4G
c2

∫

R2
Σ(~ξ ′)

~ξ − ~ξ ′

|~ξ − ~ξ ′ |2
d2ξ ′, (1)

where Σ(~ξ) is the mass density projected onto a plane perpendicular to the light path, ~ξ
describes the position of the light ray in the lens plane.

Instead we have shown in Gallo & Moreschi (2011) the following expressions for
the bending angle in terms of energy-momentum components and the mass content
M (r), of a spherically symmetric stationary spacetime

α(J) = J
∫ dls

−dl

[
3J2

r2

(
M (r)

r3 − 4π
3
%(r)

)
+ 4π (%(r) + Pr (r))

]
dy ; (2)

where J = |~ξ | is the impact parameter and r =
√

J2 + y2.
Let us observe the appearance of a term proportional to the radial component of

the energy-momentum tensor; namely Pr .
This suggested us to consider a simple model with Pr , 0 and M (r) = 0 (zero

mass), ρ(r) = 0 (zeromass density); which describes fairlywell darkmatter phenomena;
id.est. rotation curves, weak lens, scape velocities; as we have shown in previous works
(Gallo & Moreschi 2012).

Here we present a new exact solution of Einstein equations with prolate and oblate
spheroidal symmetry and zero mass, which is the natural generalization of our previous
construction with spherical symmetry. We also present a family of solutions with mass
resembling well known profiles.

2. A spacetime with prolate spheroidal symmetry and zero mass

2.1. Using the hyperbolic coordinate
The metric

We will consider spacetimes with spheroidal symmetry of the form

ds2 =a(ξ, t)dt2 − b(ξ, t)r2
µ (sinh2(ξ) + sin2(θ))dξ2

− r2
µ

(
(sinh2(ξ) + sin2(θ))dθ2 + sinh2(ξ) sin2(θ)dφ2

)
;

(3)

where rµ characterizes the position of the focus, for the spheroidal geometry, as it will
become more clear later when we relate the geometric coordinate ξ with the radial
coordinate r .
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In particular we present the static solution given by

a = a0(ξ + C)2, (4)

and
b = 1; (5)

so that the whole geometry is characterized by the two constants a0 and C.

The Einstein tensor
The corresponding components of the Einstein tensor which are different from zero

are:

Gξξ = − (2 cosh2(ξ) − 2 + sin2(θ)) cosh(ξ) sinh(ξ)
(cosh2(ξ) + sin2(θ) − 1)(cosh2(ξ) − 1)(ξ + C)

, (6)

Gξθ = − cos(θ) sin(θ)
(cosh2(ξ) − 1 + sin2(θ))(ξ + C)

, (7)

Gθθ = − cosh(ξ) sin2(θ) sinh(ξ)
(cosh2(ξ) − 1 + sin2(θ))(cosh2(ξ) − 1)(ξ + C)

. (8)

2.2. Using the radial coordinate

The metric
From the relation

ξ = arcsinh
(

r
rµ

)
= ln

(
r
rµ
+

√
(

r
rµ

)2 + 1
)

; (9)

or alternatively r = rµ sinh(ξ); one can express the metric as:

ds2 = a(r)dt2 −
(
(r2 + r2

µ sin2(θ)) *,
dr2

r2 + r2
µ

+ dθ2+- + r2 sin2(θ)dφ2
)
, (10)

and the timelike component of the metric is

a = a0

(
ln

(
r
rµ
+

√
(

r
rµ

)2 + 1
)
+ C

)2
. (11)

The Einstein tensor
The corresponding components of the Einstein tensor which are different from zero

are:

Grr = −
(2r2 + r2

µ sin2(θ))
√

r2 + r2
µ (ln

(√
r2+r2

µ+r

rµ

)
+ C)(r2

µ sin2(θ) + r2)r
, (12)

Grθ = −
r2
µ cos(θ) sin(θ)

√
r2 + r2

µ (ln
(√

r2+r2
µ+r

rµ

)
+ C)(r2

µ sin2(θ) + r2)
, (13)
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Gθθ = −
(r2 + r2

µ)r2
µ sin2(θ)

√
r2 + r2

µ (ln
(√

r2+r2
µ+r

rµ

)
+ C)(r2

µ sin2(θ) + r2)r
. (14)

The Riemann tensor
The components of the Riemann tensor which are different from zero are:

Rtrtr =

−(ln
(√

r2+r2
µ+r

rµ

)
+ C)a0r

√
r2 + r2

µ (sin(θ)2r2
µ + r2)

, (15)

Rtrtθ =

−(ln
(√

r2+r2
µ+r

rµ

)
+ C) cos(θ) sin(θ)a0r2

µ

√
r2 + r2

µ (sin(θ)2r2
µ + r2)

, (16)

Rtθtθ =

(ln
(√

r2+r2
µ+r

rµ

)
+ C)(r2 + r2

µ)a0r
√

r2 + r2
µ (sin(θ)2r2

µ + r2)
, (17)

Rtφtφ =

(ln
(√

r2+r2
µ+r

rµ

)
+ C)(r2 + r2

µ) sin(θ)2a0r
√

r2 + r2
µ (sin(θ)2r2

µ + r2)
. (18)

3. A prolate spheroidal distribution as a gravitational lens

3.1. The adapted coordinate system
We have in mind a gravitational lens configuration in which the source is located far
away close to the y axis, the lens is near the origin of the frame, and the observer along
negative values of the y axis; as depicted in Figure 1. We use coordinates (x, z) for the
plane of the lens.

3.2. A rotated spheroid
The spheroidal distribution is assumed to be at an angle ι from the z axis in the direction
of y.

3.3. Gravitational lens geometry for prolate spheroidal distributions
In the calculation of gravitational lens, one needs to calculate the spinor components of
the Ricci tensor Φ00 and the Weyl component Ψ0, with respect to a null tetrad adapted
to the null geodesic congruence of the photons.
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β

θ

α

d

d

d

l

ls

s

x

y
source

lens

observer

Figure 1. Standard notation for deviation angles and background coordinate
system. ds denotes the distance to the source of the image; dl to the lens and
dls the lens-source distance.

We choose the null tetrad in the flat background as in our previous article; so that
in the (t, x, y, z) frame, one has

la =(−1, 0, 1, 0), (19)

ma =
1√
2

(0, i, 0, 1), (20)

m̄a =
1√
2

(0,−i, 0, 1), (21)

na =
1
2

(−1, 0,−1, 0). (22)

Let us note that the Ricci component is:

Φ00 = −1
2

Rablalb = −1
2

Gablalb . (23)

The Weyl component is given by:

Ψ0 = Cabcdlamblcmd . (24)
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We finally obtain the expression

Φ00 = − 1
2

(
Grr lr lr + 2Grθ lr lθ + Gθθ lθ lθ

)

=
1

2
√

r2 + r2
µ

(
ln

(√
r2+r2

µ+r

rµ

)
+ C

) (
r2
µ sin2(θ) + r2

)
r

( (
2r2 + r2

µ sin2(θ)
)

lr lr + 2 r r2
µ cos(θ) sin(θ)lr lθ+

(
r2 + r2

µ

)
r2
µ sin2(θ)lθ lθ

)
;

(25)

while the Weyl component is given by:

Ψ0 =
1
gtt

Rtbtd mb md

=
1
gtt

Rtrtr (mr )2 +
2
gtt

Rtrtθ mr mθ +
1
gtt

Rtθtθ (mθ )2 +
1
gtt

Rtφtφ (mφ)2

=
1(

ln
(√

r2+r2
µ+r

rµ

)
+ C

) √
r2 + r2

µ

(
sin(θ)2r2

µ + r2
)

(
− r (mr )2 − 2 cos(θ) sin(θ) r2

µ mr mθ+

(r2 + r2
µ)r (mθ )2 + (r2 + r2

µ)r sin(θ)2(mφ)2
)
.

(26)

3.4. The optical scalars
Let us recall from Gallo & Moreschi (2011) that the optical scalars, namely, the expan-
sion κ and the shear components γ1 and γ2, in the thin lens approximation, are given
by:

κ =
dldls

ds
Φ̂00, (27)

γ1 + iγ2 =
dldls

ds
Ψ̂0, (28)

where

Φ̂00 =

∫ ds

0
Φ00dλ,

Ψ̂0 =

∫ ds

0
Ψ0dλ,

(29)

are the projected curvature scalars along the line of sight.
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4. Numeric calculation of the optical scalars

4.1. The expansion

For the numerical calculation we have taken the following values: The parameter C
was taken as − ln(µ), from Gallo & Moreschi (2012) which it was adjusted to the
observations of weak lens in the Coma cluster. The radius rµ was arbitrarily taken to
have the value 3 Mpc. The rotation angle ι was chosen to be π

4 . The lens distances were
taken as: dl = 97.10 Mpc, ds = 1068.03 Mpc, dls = 970.92 Mpc; which are values
from the Coma cluster used in our previous work. The integration was carried out
using Chebyshev-Gauss techniques. The number of points evaluated was automatically
adjusted to a chosen tolerance. The results are presented in the graphics of Figures 2, 3
and 4.

Figure 2. The expansion κ plotted in a log scale. One can see that it copies
the geometry of the projected spheroids.

In Figure 2 we plot the expansion optical scalar κ, with the contour level at the
bottom. One can see that the contours copy very well the projection of the spheroidal
geometry, to the (xz) plane.

Figure 3 shows the plot of the modulus of shear optical scalar γ, with the contour
level at the bottom. It is observed that in this case the structure ismuchmore complicated,
and that in the inner region the behaviour of themodulus does not follow the projection of
the spheroidal geometry. However, in Figure 4; where the shear is represented by small
segments, it is easier to follow and understand the effects of the spheroidal geometry
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Figure 3. The modulus γ of the shear expansion. The contour curves are
more complicated in this case.

Figure 4. The shear plotted as segments in the plane of the lens.
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on the gravitational lens. The segments represent the direction of the maximum shear
deformation.

5. Spacetimes with prolate spheroidal symmetry and mass

The zero mass spacetime just presented can be generalized to spacetimes with mass
content; as we do next.

The metric
Here we present a new stationary solution with mass content, spheroidal symmetry

and a non-trivial spacelike component of the energy momentum tensor whose metric is:

ds2 = a(r)dt2 −
(
(r2 + r2

µ sin2(θ)) *,
dr2

r2 − 2M (r)r + r2
µ

+ dθ2+- + r2 sin2(θ)dφ2
)
,

(30)
and the timelike component of the metric is:

a = a0

(
ln

(
r
rµ
+

√
(

r
rµ

)2 + 1
)
+ C

)2
, (31)

and where M (r) is:

M (r) =
M∗
r∗

r for r 6 r∗ and M (r) = M∗ for r > r∗ (isothermal) or (32)

M (r) = 4πρ∗r3
∗
(

ln(1 +
r
r∗

) −
r
r∗

1 + r
r∗

)
(NFW); (33)

where the constant M∗ is the mass of the generalized isothermal distribution, r∗ de-
notes the maximum radius for the isothermal distribution, or the characteristic radius
for the generalized Navarro-Frenk-White (NFW) distribution, and ρ∗ the density pa-
rameter. These two mass distributions, considered in these solutions, are the natural
generalization of the isothermal mass density and of the NFW profile to the spheroidal
geometry.

6. A spacetime with oblate spheroidal symmetry and zero mass

We generalize here the previous discussion to oblate spheroidal symmetry.

6.1. Using the radial coordinate
The metric

From the relation r = rµ sinh(ξ); one can express the metric as:

ds2 = a(r)dt2 −
(
(r2 + r2

µ cos2(θ)) *,
dr2

r2 + r2
µ

+ dθ2+- + (r2 + r2
µ) sin2(θ)dφ2

)
, (34)

and the timelike component of the metric is

a = a0

(
ln

(
r
rµ
+

√
(

r
rµ

)2 + 1
)
+ C

)2
. (35)
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7. Spacetimes with oblate spheroidal symmetry and mass

The zero mass spacetime just presented can be generalized to spacetimes with mass
content; as we do next.

The metric
Here we present a new stationary solution with mass content, spheroidal symmetry

and a non-trivial spacelike component of the energy momentum tensor. The metric is:

ds2 = a(r)dt2−(r2 + r2
µ cos2(θ))

dr2

r2 − 2M (r)r + r2
µ

−
(
(r2 + r2

µ cos2(θ))dθ2 + (r2 + r2
µ) sin2(θ)dφ2

)
,

(36)

and the timelike component of the metric is

a = a0

(
ln

(
r
rµ
+

√
(

r
rµ

)2 + 1
)
+ C

)2
, (37)

and where M (r) is:

M (r) =
M∗
r∗

r for r 6 r∗ and M (r) = M∗ for r > r∗ (isothermal) or (38)

M (r) = 4πρ∗r3
∗
(

ln(1 +
r
r∗

) −
r
r∗

1 + r
r∗

)
(NFW). (39)

These mass distributions are the natural generalization of the isothermal mass density
to the spheroidal geometry and of the NFW distribution to spheroidal geometry.

8. Final comments

We have presented several new static exact solutions of the Einstein equations, with
spheroidal symmetry. Some of them have Ttt = 0, and therefore they have zero mass,
although with a non-trivial geometry whose gravitational effects are of interest for the
explanation of dark matter phenomena.

They are the natural generalization of a previous geometry we presented before
(Gallo & Moreschi 2012), with spherical symmetry; that adequately represents dark
mater observations.

The behaviour of the shear in the weak lens calculation, for the prolate zero mass
case, is not yet well understood; but it might indicate a non-trivial behaviour of the spin
2 nature of the Weyl Ψ0 component.

These geometries have the property that they can naturally be generalize to other
matter distributions with spheroidal symmetry; using the same form of the metric. That
is they represent a family of solutions with multiple possibilities.

Wewish to develop these techniques for applications to typical non-spheric systems
as binary systems, irregular clusters, galaxies, and others.
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Abstract. Nonisentropic (warm) inflation models are characterized by radia-
tion production due to the decay of fields coupled to the inflaton during inflation.
The continuous radiation production might sustain a thermal radiation bath dur-
ing inflation as a result of the dissipative particle production. The presence of
the radiation bath can impact on the dynamics of inflation and, consequently,
on the observable quantities measured from the cosmic microwave background
radiation (CMBR). Besides of dissipative effects, these are also accompanied by
stochastic fluctuations. Both the origin and the impact of these effects on the
inflationary dynamics are reviewed here.

1. Introduction

Inflation is the most acceptable paradigm that solves the flatness and horizon problems
of the standard Big-Bang cosmological model (Liddle & Lyth 2000). We generically
defines inflation as an early accelerated expansion dominated by vacuum energy density
and driven by a fluid with negative pressure:

Inflation ⇒ ä > 0, p < −ρ/3.

Besides of solving the flatness and horizon problems of the hot Big-Bang theory,
inflation also provides a solution of how inhomogeneities can originate, thus giving a
mechanism through which large-scale structures can form. Inflation is typically driven
by a scalar field, the inflaton field. Density perturbations are sourced by perturbations
of this inflaton field, which can be either of quantum and/or thermal origin. Inflation
also solves some outstanding problems related to Grand-Unified theories (GUT), like
the problem of dangerous heavy relics (e.g., magnetic monopoles).

In the standard scenario of inflation, which we call cold inflation, the interactions
of the inflaton field with other field degrees of freedom are negligible during inflation.
In this case the universe enters in a vacuum dominated phase and any previous (if
any) initial radiation energy density, ρr , quickly redshifts away. In cold inflation, the
inflationary phase must end with a reheating phase, through which the universe enters in
the radiation dominated phase, such that the standard Big-Bang cosmological evolution
follows. The standard theory of inflation, as a bonus, predicts that the large scale
distribution of galaxies can be traced back to quantum vacuum fluctuations of a weakly
coupled field, the inflaton, during the inflationary era (Liddle & Lyth 2000).

However, there can be regimes of parameters such that the inflaton interactions with
other field degrees of freedom are not negligible. It then happens that these interactions
can generate dissipation terms, such that a small fraction of vacuum energy density
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can be converted to radiation. If the magnitude of these dissipation terms are strong
enough to compensate the redshift of the radiation by the expansion, then a steady state
can be produced, with the inflationary phase happening in a thermalized radiation bath.
This scenario is called warm inflation (WI) (for a recent review see Berera, Moss &
Ramos 2009). In warm inflation, the evolution equation for the radiation gets modified
to ρ̇r + 4H ρr = Υφ̇2, where H = ȧ/a and Υ is a dissipation term that can be a function
of both the inflaton field φ and temperature T . Typically, in warm inflation it is assumed
that T>∼H , in which case thermal fluctuations dominate over the quantum ones. As a
consequence, density fluctuations are now sourced by thermal fluctuations as opposite
to quantum fluctuations in the cold inflation scenario.

WI dynamics can be viewed as an analogous of that of open systems. Dissipative
dynamics along with stochastic forces are typical manifestations for the dynamics of
a system interacting with some large environment. We can think of such similar
dynamics to also manifest in the early universe. For instance, when the matter content
of the universe can be split into a subsystem interacting with a large energy reservoir,
then physical processes may be represented through effective dissipation and stochastic
noise terms.

The presence of a radiation bath in WI can impact on the dynamics of inflation
and, consequently, on the observable quantities measured from the cosmic microwave
background radiation. In particular, the amplitude of primordial curvature perturbations
is enhanced and this is particularly significant when a non-trivial statistical ensemble of
inflaton fluctuations is also maintained. Since gravitational modes are decoupled from
the radiation bath for energies well below the Planck scale, the presence of the thermal
radiation bath and/or a non vanishing statistical ensemble for the inflaton generically
lowers the tensor-to-scalar ratio and yields a modified consistency relation for warm
inflation, as well as changing the tilt of the scalar spectrum. This is able to alter the
landscape of observationally allowed inflationary models, with for example the quartic
chaotic potential being in very good agreement with the Planck results for nearly-thermal
inflaton fluctuations, whilst essentially ruled out for an underlying vacuum state. Besides
of dissipative effects, these are also accompanied by stochastic fluctuations. Both the
origin and the impact of these effects on the inflationary dynamics is reviewed in the
next sections. We show how the dissipative and stochastic forces associated are able
to alter the landscape of observationally allowed inflationary models, with for example
the quartic chaotic potential being in very good agreement with the Planck results for
nearly-thermal inflaton fluctuations. We also connect the results obtained from warm
inflation with the recent BICEP2 measurement of a B-mode in the CMBR, believed
to come from gravitational waves of primordial origin, and how warm inflation can
conciliate both Planck and BICEP2 results.

2. Warm inflation dynamics

Warm inflation is defined in terms of the effective evolution equation for the inflaton field
when averaging out (functionally integrating over) the other field degrees of freedom.
This produces a stochastic (Langevin-like) equation of motion for the inflaton which is
of the form (Ramos & Silva 2013)

φ̈(x, t) + 3H φ̇(x, t) +
∫

d4x′ΣR (x, x′)φ(x′) + V,φ − 1
a2∇2φ(x, t) = ξq + ξT , (1)
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where ΣR (x, x′) is a self-energy contribution and ξq and ξT are stochastic fields, with
Gaussian distributions, describing quantum and thermal (noise) fluctuations, respec-
tively. They satisfy appropriate fluctuation and dissipation relations. For example,
two-point correlation function for ξT is related to thermal part of ΣR (x, x′). The
self-energy term can be put in the form of a dissipative term in the adiabatic ap-
proximation, φ̇/φ, H, Ṫ/T < Γ, where Γ is a decay rate term. In the most recent
implementations of warm inflation (Berera, Moss & Ramos 2009), Γ is the decay
width of a heavy scalar field coupled to the inflaton field and that can decay into
light radiation fields. Under the adiabatic approximation, we can approximate the
self-energy term in Eq. (1) as

∫
d4x′ΣR (x, x′)φ(x′) ≈ Υφ̇(x, t) and the two-point

correlation function for the stochastic source ξ turns into a local correlation func-
tion: 〈ξT (x, t)ξT (x′, t ′)〉 = a−3ΥTδ(x − x′)δ(t − t ′). Likewise, the two-point corre-
lation function for the quantum noise term can be expressed as 〈ξq (x, t)ξq (x′, t ′)〉 =
H2 (1 + 2N ) /2 a−3δ(x − x′)δ(t − t ′), where N accounts for the possibility of a non-
trivial distribution of inflaton particles, produced as a result of the dissipative processes
occurring during inflation. For sufficiently fast interactions, this is expected to approach
a Bose-Einstein distribution: N ≈ nBE (k) = 1/[exp(k/aT ) − 1].

The dissipation coefficient Υ is found to have the following generic power law
dependence with φ and T (Bastero-Gil, Berera & Ramos 2011, Bastero-Gil, Berera,
Ramos & Rosa 2013),

Υ = Cφ
Tc

φc−1 , (2)

where the value of the power c dependent on the specifics of the model construction
for WI and on the temperature regime of the thermal bath. Typically, it is found that
c = 3 (low temperature), c = −1 (high temperature) or c = 0 (constant dissipation).For
example, c = 3 corresponds to the case where the inflaton interacts with a heavy (scalar)
boson field, which in turn decays into light scalars. This is the case we use throughout
this work, unless otherwise specified. The effectiveness of WI can be parametrized by
the ratio Q ≡ Υ/3H . The strong dissipative regime for WI is for Q ≫ 1, while for
Q ≪ 1, it is the weak dissipative regime for WI.

As usual, we can study the dynamics by splitting the inflaton field in a back-
ground homogeneous part and perturbations, φ(x, t) = φ(t) + δϕ(x, t). The background
quantities φ(t) and the radiation energy density ρr (t) satisfy

φ̈ + (3H + Υ)φ̇ + V,φ = 0, (3)
ρ̇r + 4H ρr = Υ φ̇2 , (4)

3H2 = 8πGρ . (5)

Prolonged inflation requires the slow-roll conditions |ǫX | ≪ 1, where ǫX = −d ln X/Hdt,
and X is any of the background field quantities. These slow-roll coefficients in WI satisfy



28 Rudnei O. Ramos

ǫ =
m2

P
2

(
V,φ
V

)2
≪ 1 +Q ,

η = m2
P

(
V,φφ

V

)
≪ 1 +Q ,

β = m2
P

(
Υ,φV,φ
ΥV

)
≪ 1 +Q , (6)

where mP is the reduced Planck mass, mP = 1/
√

8πG = 2.4 × 1018GeV.

3. Perturbations and connection with CMBR measurable quantities

From Eq. (1) in the local approximation, the equation of motion for the fluctuations
δϕ(x, t) at linear order (in Fourier momentum space) is given by

δ̈ϕ(k, t) + (3H + Υ)δ̇ϕ(k, t) + V ′′(φ)δϕ(k, t) + k2

a2 δϕ(k, t) = ξ̃T (k, t) + ξ̃q (k, t) . (7)

The solution of this equation can be expressed in terms of a Green function and from it
we define the power spectrum for the inflaton field perturbations,

Pδϕ (z) =
k3

2π2

∫
d3k ′

(2π)3 〈δϕ(k, z)δϕ(k′, z)〉 , (8)

where z = k/(aH ). These perturbations at some scale k get frozen as soon these scales
cross the horizon, z∗ = 1 and are imprinted in the CMBR when they reenter the horizon
again at the decoupling era. The power spectrum can then be related to the CMBR
quantities like the amplitude ∆R for the curvature perturbation (defined in terms of the
gauge invariant curvature perturbation ξ = −Hδϕ/φ̇) and the spectral index ns ,

∆2
R =

H2

φ̇2 PR = ∆
2
R (k0)

(
k
k0

)ns−1
, (9)

and the spectral index ns , is the spectral index (Ne is the number of e-folds of inflation):

ns − 1 =
d ln∆2

R

dNe
=

d ln∆2
R

d ln k
, (10)

where Ne is the number of e-folds of inflation.
For a generic inflaton phase-space distribution at the time when observable CMB

scales leave the horizon during inflation, z = z∗, the dimensionless power spectrum of
curvature perturbations in WI found to be given by (Ramos & Silva 2013)

∆2
R =

(
H∗
φ̇∗

)2 (
H∗
2π

)2 1 + 2n∗ +
(

T∗
H∗

)
2
√

3πQ∗√
3 + 4πQ∗

 , (11)
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which yields the standard cold inflation result,
(
H∗/φ̇∗

)2
[H∗/(2π)]2, in the limit

n∗,Q∗,T∗ → 0.
Another quantity that can be used to constrain the many different inflation models

is the tensor to scalar curvature perturbation ratio, r = ∆2
T/∆

2
R . Inflation in general also

predicts a spectrum of gravitational waves. Gravitational wave perturbations also gets
amplified during inflation, just like vacuum and thermal (in WI) perturbations of the
inflaton field. Gravity waves are weakly coupled to the thermal bath and the spectrum of
tensor modes retains its vacuum form, ∆2

T = (2/π2)(H2∗/m2
P ). This therefore suppresses

the tensor-to-scalar ratio, yielding a modified consistency relation in the case of WI,

r ≃ 8|nt |
1 + 2n∗ + 2πQ∗T∗/H∗

, (12)

where nt = −2ǫ∗ is the tensor index, while the spectral index ns in WI is (Bartrum,
Bastero-Gil, Berera, Cerezo, Ramos & Rosa 2014)

ns − 1 ≃ 2η∗ − 6ǫ∗ +
2κ∗

1 + κ∗
(7ǫ∗ − 4η∗ + 5σ∗) , (13)

whereσ = m2
PV ′/(φV ) < 1+Q and we have used the slow-roll equations, 3H (1+Q)φ̇ ≃

−V ′(φ) and ρR ≃ (3/4)Qφ̇2, to determine the variation of κ ≡ 2πQT/H as different
scales become super-horizon during inflation.

Modifications are, however, more prominent in the opposite limit of nearly-thermal
inflaton fluctuations, with n∗ ≃ nBE∗. For T∗>∼H∗ and Q∗ ≪ 1 we then obtain:

ns − 1 ≃ 2σ∗ − 2ǫ∗ , (14)

which is, in particular, independent of the curvature of the potential, which only deter-
mines its running:

n′s ≃ 2σ∗(σ∗ + 2ǫ∗ − η∗) − 4ǫ∗ (2ǫ∗ − η∗) . (15)

In this case, a red-tilted spectrum, ns < 1, corresponds to either potentials with a
negative slope, such as hill-top models, or large field models where ǫ∗ > 2(mP/φ∗)2.

The above results for r and ns in WI also easily goes to the cold inflation result
when n∗,Q∗,T∗ → 0. In cold inflation (see, e.g., Liddle & Lyth 2000), it is found that
r = 16ε, ns = 1 + 2η − 6ε.

The observed amplitude of curvature perturbations from the recent measurements
from Planck (Ade et al. 2013) gives ∆2

R ≃ 2.2 × 10−9. The recently released Planck
results also give for the tensor to scalar amplitude ratio the result r < 0.11 at 95%
CL (when the high-ℓ CMB ACT+SPT data are added) and for the spectral index ns =
0.9600±0.0072, while when including the Planck lensing likelihood gives ns = 0.9653±
0.0069 and r < 0.13, and by also adding BAO data, it gives ns = 0.9643 ± 0.0059 and
r < 0.12.

4. Results

Let us show some of the results that the above expressions derived in the context of WI
produces. For that, we specialize in the particular case of a chaotic quartic inflation
potential,
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V (φ) = λφ4 . (16)

In the cold inflation case, it is known that such potential for inflation is not consistent
with the present data, since it predicts a tensor-to-scalar ratio r and spectral index ns
outside of the allowed region as recently determined by the results from Planck (Ade et
al. 2013).

Our results for WI (Bartrum, Bastero-Gil, Berera, Cerezo, Ramos & Rosa 2014)
are shown in Fig. 1.
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Figure 1. Trajectories in the (ns, r) plane for V (φ) = λφ4 as a function
of the dissipative ratio, Q∗ < 0.01, 50-60 e-folds before the end of inflation,
compared with the Planck results (Ade, et al. 2013), for g∗ = 228.75 rela-
tivistic degrees of freedom. The dark green (light blue) curves correspond
to nearly-thermal (negligible) inflaton occupation numbers n∗, with dashed
branches for T∗ ≤ H∗. Note that corresponding curves converge in the cold
inflation limit, T∗,Q∗ → 0.

The results in Fig. 1 for the trajectories in the (ns, r) plane show that depending
on the values of dissipation ratio Q and the statistical state for the inflatons, particularly
in the case where the inflatons are in a quasi-thermalized state with a Bose-Einstein
distribution nBE, the trajectories fall just easily in the allowed region from Planck.

5. The BICEP2 recent results and possible consequences for WI

The BICEP2 experiment (Ade, et al. 2014) has recently reported evidence for a large
tensor-to-scalar ratio r = 0.20+0.07

−0.05 (without foreground dust subtraction) from the
observation of B-mode polarization in the CMBR at degree angular scales. While
this is good news for the inflationary paradigm (Liddle & Lyth 2000), which predicts
a primordial tensor component in the CMBR spectrum, BICEP2’s value seems to
be in tension with the constraint on the tensor-to-scalar ratio reported by the Planck
collaboration last year (Ade et al. 2013). The Planck collaboration has, in particular,
placed an upper bound r < 0.11 (95% CL), assuming that primordial scalar curvature
perturbations are described solely by an adiabatic component with a simple power-law
spectrum, i.e. no running of the spectral index.
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The constraints obtained by BICEP2 in the (ns, r) plane is illustrated in Fig. 2,
where we superimpose them in the same figure 1 that includes the WI trajectories. Note
from the figure that WI can also be consistent with the BICEP2 results. The figure
also illustrates the discrepancy (at the 2-σ level) of the BICEP2 results from that from
Planck in the absence of a running for the spectral index (n′s = dns/d ln k).

Figure 2. Trajectories in the (ns, r) plane. Same as in Fig. 1, but now
including the contours from BICEP2.

On the one hand, Planck has also confirmed a significant deficit of power on large
angular scales with respect to their best-fit ΛCDM model, with a primordial spectrum
characterized by a constant red-tilted spectral index, so that any additional contributions
like gravity waves are naturally rather constrained. On the other hand, any modification
of the primordial spectrum that tends to reduce the power on large scales will help
relaxing the above constraint on r. Several possibilities were already mentioned by
the Planck collaboration, and they have been further explored in view of the BICEP2
result, for example a negative running of the scalar spectral index, sterile neutrinos
as extra relativistic degrees of freedom, a blue-tilted tensor spectrum, or isocurvature
perturbations (Kawasaki & Yokoyama 2014). In particular the tension in the bound on
the tensor-to-scalar ratio r between Planck and BICEP2 can be resolved by introducing
isocurvature perturbations that are anti-correlated with the main adiabatic component.

As shown in Bastero-Gil, Berera, Ramos & Rosa 2012, a cosmological baryon
asymmetry can be produced through dissipative particle production during inflation,
a mechanism known as warm baryogenesis. The produced baryon-to-entropy ratio
ηs = nb/s was shown in that reference to be consistent with the observed cosmological
asymmetry 7.2× 10−11 < ηs < 9.2× 10−11. Since the produced asymmetry ηs depends
on the inflaton field and temperature, super-horizon fluctuations of the inflaton field
will also be imprinted in the CMB temperature anisotropies in the form of baryon
isocurvature perturbations. These have the same origin and will thus be fully (anti-
)correlated with the main adiabatic curvature perturbations. This is a very distinctive
feature of warm baryogenesis and makes it a testable model, which is not the case
of most of the baryogenesis mechanisms proposed in the literature. Besides baryon
isocurvature perturbations, dark matter isocurvature ones can equally be produced by
the same mechanism during WI. These isocurvature perturbations Bm can be produced
at a level still consistent with the upper bounds set by Planck, |Bm | < 0.079, yet, they
can affect the CMB temperature anisotropies 〈(∆T/T )2〉 strongly,
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〈(∆T/T )2〉 ∼ Pζ

(
1 +

5
6

reff

)
, (17)

where

reff = r +
6
5

(
4B2

m + 4Bm

)
, (18)

such that for anti-correlated isocurvature perturbations a smaller effective tensor-to-
scalar ratio can be obtained.

It is important to mention that in deriving the bounds on the tensor-to-scalar
ratio r from CMB temperature anisotropies, the Planck collaboration has assumed
that primordial scalar curvature perturbations are described uniquely by an adiabatic
component. The effects of any other component such as baryon isocurvature modes are
then necessarily absorbed into an effective tensor-to-scalar ratio, ref f , which is smaller
than the true tensor contribution if the additional components are anti-correlated with the
dominant adiabatic modes. Using this effect of an anti-correlated matter isocurvature
perturbation that can be generated during WI, an either partial or even full screening is
naturally present and may reconcile the BICEP2 detection of B-mode polarization with
the upper bound on the tensor-to-scalar ratio placed by Planck, as shown in details in
Bastero-Gil, Berera, Ramos & Rosa (2014). A partial screening would, in particular,
be interesting if there is future evidence for a non-zero tensor-to-scalar ratio in the
temperature power spectrum that is somewhat smaller than the value inferred from the
polarization data. This screening can, in fact, be effective for a wide range of values for
the tensor-to-scalar ratio and is not inherent to the large value obtained by the BICEP2
collaboration, which is presently is under scrutiny.

An example of this effect of screening of the tensor-to-scalar ratio is shown in Fig.
3, again for the case of a quartic inflaton potential in WI.

6. Summary and perspectives

We have seen that warm inflation is able to describe in a concomitantly and natural way
the effects of both quantum and thermal fluctuations. While the observational constraints
involving the spectral index ns and the tensor to scalar curvature ratio r already rule out a
large class of inflaton polynomial potentials V ∼ φp, with p > 3, dissipative effects and
thermal fluctuations can make these higher polynomial inflaton potentials compatible
again with the observational constraints, as shown recently in the references Ramos &
Silva (2013) and in Bartrum, Bastero-Gil, Berera, Cerezo, Ramos & Rosa (2014). We
have here shown the results for the particular case of a quartic inflaton potential and
seen how easily WI can make it in concordance with the recent results from Planck. The
most important effect of dissipation and/or a non-trivial inflaton particle distribution
is the lowering of the tensor-to-scalar ratio in the modified consistency relation in Eq.
(12), so we expect next upcoming Planck release and future CMB B-mode polarization
searches to shed new light on the nature of inflaton fluctuations.

We have also seen that WI can naturally account for the baryon asymmetry of
the universe. As an additional bonus, we predicts the production of anti-correlated
isocurvature perturbations as a result of the matter production due to dissipative effects
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Figure 3. Trajectories in the ns − r plane for the quartic model (thermal
inflaton occupation numbers) with 50 e-folds of inflation and g∗ = 228.75,
with baryon (rb

ef f
), CDM (rc

ef f
), and full matter isocurvature perturbations

(rb+cef f ). The shaded regions show the 68% and 95% CL Planck contours (Ade,
et al. 2013), including the results of WMAP and BAO observations, and the
1σ interval for r derived by the BICEP2 collaboration (Ade, et al. 2014) after
taking into account dust contributions. These results correspond to the range
T∗/H∗ = 0 − 13 (Q∗ = 0 − 0.01).

during WI. The obtained results for chaotic models suggest that a large tensor-to-scalar
ratio could be accommodated by the current Planck results due to the presence of these
matter isocurvature modes associated with an asymmetric dissipation of the inflaton’s
energy density into baryonic or CDM species. This provides a way of reconciling
the Planck results with the recent results from the BICEP2 experiment on B-modes
measurements on the CMB.
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Abstract. One can say that the theory of gravity with higher derivatives terms
is one of the most relevant models of quantum gravity. The main reason is
that the action of gravity should include fourth derivative terms to provide
renormalizability in the vacuum sector at the semiclassical level. At the same
time, including the generic fourth derivative terms means the presence of massive
ghosts, which are gauge-independent massive states with negative kinetic energy.
At both classical and quantum level these ghosts may violate stability of the
vacuum state and hence the theory becomes inconsistent. In order to check to
which extent this situation depends on the energy scale, we explore the dynamics
of the gravitational waves on the background of classical solutions. There are
strong arguments that massive ghosts produce instability only when they are
present as physical particles and this requires a very high energy scale. In the
case of a cosmological background one can observe that if the initial frequency
of the metric perturbations is much smaller than the mass of the ghost, no
instabilities are present.

1. Introduction

The QFT in curved space requires introducing a generalized action of external gravity
field. One can prove that the theory can be renormalizable only if such a vacuum action
includes four derivative terms. We will not go into details, but just refer the reader to the
books in Birell & Davies (1982), Buchbinder et al. (1992) for a general introduction, and
to the recent paper in Lavrov & Shapiro, (2010) for the most complete proof, including
the case when non-covariant gauge fixing conditions are used. The necessary form of
the gravitational vacuum action is as follows:

Svac = SEH + SHD , (1)

where

SEH = − 1
16πG

∫
d4x
√−g {R + 2Λ } (2)

is the Einstein-Hilbert action with the cosmological constant and the higher derivative
term SHD , can be recast in the most useful form as

35
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SHD =

∫
d4x
√−g

{
a1C2 + a2E + a3✷R + a4R2

}
. (3)

Here

C2 = R2
µναβ − 2R2

αβ + 1/3 R2 (4)

is the square of the Weyl tensor and

E = RµναβRµναβ − 4 RαβRαβ + R2 (5)

is the integrand of the topological Gauss-Bonnet term.
In quantum gravity, higher derivative term like the square of the Weyl tensor

indicate the presence of massive ghost, namely, a spin-two particle with negative kinetic
energy. This leads to the problem with unitarity, at least at the tree level. But, in the
semiclassical theory, gravity is external and unitarity of the gravitational S-matrix can
be not requested. Therefore, the consistency conditions in this case can be relaxed to
the existence of physically reasonable solutions and their stability under small metric
perturbations. Perhaps the most important point here is that the theory without the
fourth-derivative terms (3) can not be consistent. If we do not include them into the
classical action, these terms will emerge in the quantum corrections anyway, with infinite
coefficients. The difference with the theory (1) would be that, without these terms in
the classical action one can not control higher derivatives by means of multiplicative
renormalization.

The higher derivative QG based on the fourth-derivative action (1), possesses a
massive spin-two gauge-independent excitation called massive ghost,

Gspin−2(k) ∼ 1
m2

(
1
k2 −

1
k2 + m2

)
, m ∝ MP . (6)

In the framework of linearized theory one can separate the massless and massive degrees
of freedom. It is an easy exercise to check that the kinetic energy of the massive
component is negative. For this reason this particle is called massive ghost. Indeed,
the mass of this ghost is huge, of the Planck order of magnitude. The main point of
this review is a new proposal concerning ghosts, which was originally done in F. de O.
Salles & Shapiro (2014).

Including even more derivatives was initially thought to move massive pole to a
much higher mass scale. In Asorey et al. (1997) the following action was proposed

S = SEH +

∫
d4x
√−g

{
a1R2

µναβ + a2R2
µν + a3R2 + ...

+ c1Rµναβ✷
kRµναβ + c2Rµν✷

kRµν + c3R✷kR + b1,2,..R
k+1
...

}
. (7)

A simple analysis shows that this theory is superrenormalizable, but the massive ghost
is still here. For the case of real poles one can prove that the spin-two part of the
propagator has the structure
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G2(k) =
A0

k2 +
A1

k2 + m2
1
+

A2

k2 + m2
2
+ · · · + AN+1

k2 + m2
N+1
, (8)

where for any sequence 0 < m2
1 < m2

2 < m2
3 < · · · < m2

N+1, the signs of the correspond-
ing terms alternate, Aj · Aj+1 < 0. Therefore, the situation when the ghost is shifted to
an infinite energy level is ruled out.

2. Stability of classical solutions at low energies

In our opinion, the most risky assumption which is usually done to rule out the higher
derivative theory is that the Ostrogradsky instabilities or Veltman scattering are relevant
independent on the energy scale. There is a relatively simple way to check this assump-
tion. Let us take a higher derivative theory of gravity and verify the stability with respect
to the linear perturbations on some, physically interesting, dynamical background. If
the mentioned assumption is correct, we will observe rapidly growing modes even for
the low-energy background and for the low initial frequencies of the gravitational per-
turbation. On the contrary, if there are no growing modes at the linear level, there will
not be such modes even at higher orders. One has to remember that the ghost issue is
essentially a tree-level problem, so the study of classical solution is sufficient to draw
conclusions about the general situation.

Up to the present moment, the program formulated above has been realized in the
following three cases:

a) Cosmological background. In the particular case of de Sitter metric the result is
partially known for more than thirty years (Starobinsky 1979) and has been repeatedly
confirmed (Hawking et al. 2001), including by using the effective action method
(Fabris et al. 2001). In these papers the theory with semiclassical corrections
to the classical action (3) has been used. On the other hand, recently the same
investigation has been repeated for other cosmological metrics, such as radiation-
and dust-dominated Universes (Fabris et al. 2012). At the same time, in all these
papers the relation between instabilities and higher derivative ghosts was never traced
back explicitly. This last part has been explored in F. de O. Salles & Shapiro (2014)
and in what follows we shall review the main results of this work.

b) Black hole background. In this case there are conflicting data in the literature,
namely the statements about stability (Whitt 1985) and instability (Myung 2013) of
this solution. The analysis of this case is too complicated and we will not discuss
it here. Let us only note that it is not clear to which extent the results depend
on the choice of the boundary conditions and on the frequency of initial seeds of
perturbations.

c) General curved background which is close to a flat space-time in a sense that the
curvature tensor components are very small compared to the mass scale of the ghost.
Since the non-linearities of the perturbations can be taken into account by means of
a non-trivial metric background, it looks natural to consider a weak (albeit arbitrary)
gravitational field. Such consideration is, in principle, possible by using Riemann
normal coordinates and local momentum representation (F. de O. Salles & Shapiro
2014) but goes beyond the present short review.
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3. Background cosmological solutions

In principle, one can explore the stability of the classical solution in the theory (1), but
for the sake of generality we can include also the semiclassical corrections coming from
the massless fields. It is supposed that the effects of massive fields are negligible at the
sufficiently low energies.

In the case of massless conformal fields one can set to zero the coefficient of the
R2-term, a4 = 0, in the action (3), without violating renormalizability. Therefore, the
theory of our interest is described by the sum of a classical action (1) with a4 = 0 and
with the additional anomaly-induced (Riegert 1984; Fradkin & Tseytlin 1984) quantum
contribution1 ,

Γind = Sc[gµν] − 3c + 2b

36(4π)2

∫

x

R2(x) +
ω

4

∫

x

∫

y

C2(x) G(x, y)
(
E − 2

3
✷R

)
y

+
b
8

∫

x

∫

y

(
E − 2

3
✷R

)
x G(x, y)

(
E − 2

3
✷R

)
y , (9)

where we used compact notations
∫

x

=

∫
d4x
√−g , and ∆4 G(x, y) = δ(x, y) . (10)

Furthermore,

∆ = ✷2 + 2Rµν∇µ∇ν − 2
3

R✷ +
1
3

(∇µR)∇µ (11)

is the conformal self-adjoint Paneitz operator, coefficients ω, b, c depend on the number
of quantum fields and Sc [gµν] is an arbitrary conformal invariant functional of the metric.
Further details about derivation of (9) can be found, e.g., in Fabris et al. (2001).

In order to understand the effect of quantum terms on the conformal factor of the
metric, let us consider the equation for this factor a(t), Consider unstable inflation,
matter (or radiation) dominated Universe and assume that the Universe is close to the
classical FRW solution. The equation is

¨̈a
a
+

3ȧ ˙̈a
a2 +

ä2

a2 −
(
5 +

4b
c

)
äȧ2

a3 − 2k

(
1 +

2b
c

)
ä

a3

−M2
P

8πc

(
ä
a
+

ȧ2

a2 +
k

a2 −
2Λ
3

)
= − 1

3c
ρmatter , (12)

where we have also introduced the matter term for illustrative purpose. Also, k = 0,±1
and Λ is the cosmological constant. It is easy to see how the things change in this
equation when the time change. First of all, let us consider the empty universe, with

1Since we are mainly interested in the tensor gauge-independent mode of the metric perturbations, there is
no problem to assume that the classical R2-term is absent, since this term does not influence essentially
the dynamics of this mode.
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ρmatter → 0. In this case one can find particular solutions (see Starobinski 1980, and
also Pelinson et al. 2003 for the case with cosmological constant)

a(t) =


ao exp(Ht) , k = 0
ao cosh(Ht) , k = 1
ao sinh(Ht) , k = −1

, (13)

where Hubble parameter takes two constant values

H = H± =
MP√−32πb

*, 1 ±
√

1 +
64πb

3
Λ

M2
P

+-
1/2

. (14)

Let us note that the coefficient b is negative for any particle content of the theory
contributing to quantum terms. For the small cosmological constant Λ ≪ M2

P the two
solutions (14) boil down to

H+ =
MP√−16πb

, H− =

√
Λ

3
. (15)

Obviously, the first solution here is usual Starobinsky inflation (initial part of it, better
say) and the second one is the usual dS solution without quantum corrections. What
we need here is the stability of the second of these solutions with respect to the tensor
perturbations of the metric.

One can first perform a simple test of the model, by considering the stability of the
low-energy solution with H− with respect to the perturbations of the conformal factor
(Pelinson et al. 2004). Consider H → H− + const · eλt and arrive at

λ3 + 7H0λ
2 +


(3c − b)4H0

2

c
− M2

P

8πc

 λ −
32πbH0

3 + M2
PH0

2πc
= 0 . (16)

The solutions of this equation have positive real parts

λ1 = −4H0 , λ2/3 = −3
2

H0 ± MP√
8π |c | i , (17)

indicating the absence of growing modes. Obviously, the positive cosmological constant
Λ > 0 protects the low-energy dS solution from higher-derivative instabilities in this
case, even in the presence of higher derivatives.

One can regard the two dS solutions (15) as extreme states of the Universe (Shapiro
2002). The first of these solutions is the initial phase of the Starobinsky inflation and
the last one is the distant future of the Universe when the effect of all kinds of matter
becomes irrelevant and only cosmological constant will drive the accelerated expansion.
What is important for us is that, in the low-energy regime of a late Universe, the solution
with H− provides an extremely precise approximation for the solution with quantum
terms taken into account. In the absence of quantum term (9) this is an exact solution,
because Eq. (3) with a4 = 0 does not affect the dynamics of the conformal factor. But
even if the quantum term (12) is taken into account, it is still a perfect approximation.
The reason that the theory without matter has only two dimensional parameters, MP
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and Λ. Any correction to H− is given by a positive power of the ratio Λ/M2
P , which is

of the order of 10−120. So, we can safely use this background solution at low energies.
Let us now consider the case with the nontrivial matter contents, ρmatter . Consider

the late time epoch. It is easy to see that the terms of the first line of (12), which are
of the quantum origin, behave like t−4. At the same time the second-line terms, of
the classical origin, all behave like t−2 (see Pelinson & Shapiro 2011 for more detailed
discussion). Obviously, the quality of the classical approximation for the solution a(t)
becomes better for t → ∞ and can be considered a very good one in the late epoch of
the Universe.

4. Gravitational waves and ghosts

Now we are in a position to explore the dynamics of the gravitational waves on the
background of cosmological solutions described in the previous section. For this end
we consider small perturbation

gµν → gµν + hµν , h0µ = 0 , ∂i hi j = 0 and hii = 0 , (18)

where the last three conditions mean synchronous coordinate condition and fixing the
gauge freedom such that we deal with the tensor mode only. The background metric
should be g0

µν = {1, −δi j a2(t)}, where a(t) can be chosen as cosmological constant-,
radiation- or dust-dominated classical solution. Finally, our notations are µ = 0, i and
i = 1, 2, 3. In order to explore the time dynamics of the gravitational waves one can
make a partial Fourier transformation

hµν (t,~r) =
∫

d3k

(2π)3 ei~r ·~k hµν (t, ~k) (19)

and assume that the modes with different momenta do not interact between each other.
Then k = |~k | becomes a constant parameter and one can deal with an ordinary differential
equation instead of a partial one.

In the original papers we worked with both classical case described only by the
action (1) in F. de O. Salles & Shapiro (2014) and with the theory which includes
semiclassical corrections (9) in Fabris et al. (2012). It was shown that the effect of
these semiclassical corrections is negligible when we deal with the sufficiently small
perturbations and sufficiently weak background. The qualitative explanation of this
fact is that all the terms in (9) are at least of the third order in curvature tensor, or
reduce to the less relevant R2-term. Therefore, for the reason of compactness we will
restrict ourselves by the purely classical case and also keep the cosmological constant
zero and the space section of the space-time manifold plane. Then the equation for the
perturbations have the form

....
h +6H
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32πa1
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a2 +[ MP
2
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(
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(20)
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Already at this level one can see that the equation depends only on the coefficient
of the Weyl-squared term a1 in the action (3) and not on other terms, as one should
expect.

The analysis of the equation (20) and its semiclassical generalization has been
done in F. de O. Salles & Shapiro (2014) and Fabris et al. (2012), correspondingly.
Let us present here only qualitative results, which were achieved by both analytical and
numerical methods. The analytical method was based on the following idea. One can
approximately treat all coefficients as constants, assuming that the time variation of the
Hubble parameter and its derivatives performs slower that the one of the perturbations.
In this case the consideration can be performed by conventional elementary methods.
The numerical methods included the CMBEasy software or Wolfram’s Mathematica,
and provided the results which were perfectly consistent with the mentioned analytic
approach.

The net result is that the stability is completely defined by the sign of the coefficient
a1 of the Weyl-squared term.2 The most relevant observation is that the sign of this
term defines whether graviton or ghost has positive or negative kinetic energy!

One can distinguish the following three cases:

• The coefficient of the Weyl-squared term is negative, a1 < 0. Then

Gspin−2(k) ∼ 1
m2

(
1
k2 −

1
k2 + m2

)
, m ∝ MP . (21)

In this case there are no growing modes up to the Planck scale, ~k2 ≈ M2
P. For the

dS background this is in a perfect agreement with the previous results of Starobinsky
(1979) and Hawking et al. (2001). It is remarkable that when the frequency k = |~k | is
getting close to the Planck scale, the growing modes start to show up. From the physical
side this means that the higher derivative theory (1) is actually stable against ghost-
induced perturbations, but only for the frequencies below the Planck cut-off. Some
plots illustrating this situation are shown in Figure 1.
• The classical coefficient of the Weyl-squared term is positive, a1 > 0 and also the
sign M2

P → −M2
P. Then the propagator of the tensor mode has the form

Gspin−2(k) ∼ 1
m2

(
− 1

k2 +
1

k2 + m2

)
, m ∝ MP . (22)

With this “wrong” sign of a1 , the massless graviton is becoming a ghost. On the contrary,
massive spin-2 particle in this case has positive energy. As one could expect, in this
case there is no Planck-mass threshold and, as we have found, there are rapidly growing
modes at any scale of frequencies. This example is artificial, but very illustrative, for
it explicitly shows the relation between mass of the ghosts and the stability of classical
solutions.

Coming back to the physical case a1 < 0, the natural interpretation of the result is
that, at low energies, the massive ghosts are present only in the vacuum state. There are
no even one of such excitations “alive” until the typical energy scale remains below the
Planck mass threshold. As far as the frequency comes close to MP, the ghosts start to
be generated from vacuum and we observe strong instabilities.

2Let us mention that the same is true in the semiclassical case with the non-zero coefficient c, which
corresponds to the classical a4.
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Figure 1. Illustrative plots for the case of radiation-dominated Universe.
There are no growing modes up to the frequency k ≈ 0.5 in Planck units.
Starting from this value, one can observe the massive ghost making destructive
work.

5. Conclusions and further perspectives

One should definitely quantize both matter and gravity, for otherwise the theory would
not be complete. Indeed, the quantum matter is something essentially more certain
than the quantum metric, simply because quantization of matter is really experimentally
supported, in all senses. Since it is not possible to deal with the quantization of matter
fields without higher derivatives terms (3), the main question is not whether we like
these terms or not. In our opinion the question is to explain why these terms do not
produce destructive instabilities in the classical gravitational solutions.

For QG with higher derivatives, the propagator includes massive nonphysical
mode(s) called ghosts. These massive ghosts are capable to produce terrible instabilities,
but for some unknown reason our world is stable and it is interesting to understand why
this happens. At least in the cosmological case, ghosts are not produced at the energy
scales far below the Planck mass. If there is no at least one such ghost excitation in the
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initial spectrum, there are no instabilities at the linear approximation and the Lyapunov
theorems guarantee that this will be the case, also, at the non-linear level.

Assuming that our conjecture about the situation with ghosts “sleeping” in the
vacuum state is correct, the higher derivative gravity becomes a perfect candidate to
be an effective QG below the Planck scale. Then we have to answer the question of
whether the effect of this theory at low energies is the same of the low-energy quantum
GR or not, as it was discussed in Shapiro (2009).

It is clear that the energy scale below Planck mass covers most of the possible
applications. On the other hand, there is a conceptually important question of what
happens with the ghosts above MP. In this case we need some new ideas. The solution
can be related to string theory, or to some new principles of Physics which we do not
know yet. In principle, on of the options would be some principle which forbids the
Planck densities of energy to form. For instance, some hypothesis which closely fit this
requirements, can be found in the recent works (Dvali et al. 2011), but, in general, this
problem remains open.
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Abstract.
Gamma-ray bursts (GRBs) are the most violent and energetic events in the

universe. Short GRBs seem to be the result of the final merger of two com-
pact objects, whereas long GRBs are probably associated with the gravitational
collapse of very massive stars (collapsars).

The central engine of a GRB can collimate relativistic jets, where shocks
are produced and particles can be accelerated. Although the exact location of
the region where the gamma rays are created is still under debate, it is widely
accepted that the prompt emission has a different origin from the afterglow. The
latter is emitted at a much greater distance from the central engine, when the
fireball is decelerated by its interaction with the interstellar medium.

It seems reasonable to assume that if the prompt gamma-ray radiation and
the afterglows are generated by relativistic electrons accelerated in shocks, then
the same shocks should also accelerate baryons. These high-energy protons can
produce neutrinos through pp inelastic collisions and pγ interactions, making
GRBs candidates to be sources of high-energy neutrinos.

In this review, I discuss different scenarios where high-energy neutrinos
(GeV-EeV) can be generated.

1. Introduction

Gamma-ray bursts (GRBs) are the most energetic explosions known to occur in the
universe since the Big Bang. The initial prompt phase can last from milliseconds to
several tenths of seconds, and in this short time an energy of ∼ 1053 ergs is released
(e.g., Piran, 2000; Mészáros, 2002). The peak of the spectra is in the gamma-ray band
(100 keV < E < MeV), hence the name of these sources.

The first event was detected in July 2, 1967, by the satellites of a military program
called Vela. These satellites were built by the United States to detect gamma radiation
pulses emitted by possible nuclear weapon tests in space.1 Since the features of these
bursts were unlike any known nuclear weapon, its origin was a mistery, and their
existence was kept as a secret for more than 6 years. Finally, in 1973, a team at Los
Alamos Scientific Laboratory, led by Ray Klebesadel, rejected the possibility of these
bursts being produced within the Solar System. The observations of the new gamma ray

1The Partial Test Ban Treaty signed in 1963, banned all nuclear testing on space, underwater and atmosphere.
All testing was to be driven underground.
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sources, which were called Gamma-ray bursts, were then published (Klebesadel et al.,
1973).

For almost 20 years little progress was made in the understanding of the origin,
until 1991, when the Compton Gamma Ray Observatory was launched. The observatory
was equipped with the instrument BATSE (Burst and Transient Source Explorer), a
sensitive gamma-ray detector, designed for detecting transient events. In the 9 years of
the mission, BATSE registered more than 2700 events, an average of one gamma-ray
burst event per day (Paciesas et al., 1999).

This instrument provided crucial data regarding the origin of GRBs. The bursts
distribute isotropically on the sky, a fact that indicates an extragalactic origin.

The first afterglow in X-rays was found in 1997, by the Italian-Dutch X-ray astron-
omy satellite BeppoSAX. A few months later, the first optical spectrum was measured,
rendering a determination of the host galaxy redshift. This detection finally confirmed
that GRBs have an extragalactic origin. The host galaxies of several long bursts were
found to have typical redshifts z = 1 − 2, which means that those GRBs occurred on
very distant galaxies.

Once the GRB distance scale was identified, a new conundrum arised: what is
the central engine of GRBs that is capable of generating more than 1050 ergs? The
Swift observatory and the Fermi Gamma-ray Space Telescope are the missions that
have helped unveiling the enigma.

Swift was launched in 2004 and is still operational. Swift is the first gamma-ray
observatory designed with GRBs as the main target. It is equipped with the Burst Alert
Telescope (BAT), which is a very sensitive gamma-ray detector, capable of localizing
a burst with arcmin accuracy within a few seconds. It also has on board the X-ray
Telescope (XRT) and the Ultraviolet/Optical Telescope (UVOT), both dedicated to
study the afterglow emission.

The Fermi Gamma-ray Space Telescope was launched in 2008. One of its two
main instruments is the Gamma-ray Burst Monitor (GBM); it can localize a burst with
10−degree accuracy, and has been detecting GRBs at a rate of ∼ 300 per year (Gehrels
et al., 2009).

These instruments have provided precise observations of hundreds of bursts, and
have been crucial to understand many aspects of these sources.

The main topic of this article is the neutrino emission from GRBs; nevertheless, a
basic discussion on GRB physics is presented in the first two sections. For more details
and a complete discussion on phenomenology and theory of GRBs see, e.g., Zhang &
Mészáros (2004), Gehrels et al. (2009) and Zhang & Kumar (2013).

2. Classification

There is a great variety of light curves of GRBs, unlike other transient sources (e.g.,
novas, supernovas, etc). Several categories of GRBs can be found depending on the
property used as classifier. The historical classification is made considering the duration
of the prompt emission, and leads to two populations of bursts: one with an average
duration of ∼ 0.3 s, and the other centered around ∼ 30 s (see Fig. 1). Although there
is a significant overlapping region where it is not clear to which category the events
belong, short and long GRBs are the standard categories.

The classification in long and short relates to two different progenitors. Long
GRBs make approximately 75% of the bursts. The study of long GRB afterglows shows
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Figure 1. Duration of the bursts detected by BATSE, using a duration
parameter T90 defined as the time over which a burst emits from 5% of its
total measured counts to 95% (Paciesas et al., 1999).

that they take place in galaxies with high stellar formation rates. In addition, ∼ 36 of
these bursts have been associated with core-collapse supernova, which provides the best
evidence that long GRBs are related to the deaths of massive stars (Hjorth & Bloom,
2012).

The first afterglow of a short GRB was detected by Swift in 2005, eight years
later than the long counterpart. This is due to short GRB afterglows being fainter than
long GRB afterglows, and also because short GRBs account only for about 25% of
gamma-ray bursts.

Few host galaxies of short GRBs have been identified, and they are usually found
to be elliptical galaxies with low stellar formation rate. There has been no association
with supernovae and, consequently, these events are not linked to massive stars. The
origin of short GRBs is related to the merger of two compact objects. Using numerical
simulations Rezzolla et al. (2011) showed that colliding neutron stars form a rapidly
spinning black hole surrounded by a hot and highly magnetized torus.

3. Theoretical models

There are at least three basic conditions that any GRB model should fulfill:

• Energetics: considering that GRBs occur at cosmological distances, any model
should be able to account for an equivalent isotropic energy of 1053 ergs.

• Size of the emitting region: since the temporal scales of variability are very short
(∼ 10 ms), then the emitting region should be compact.
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Figure 2. Left: Spectrum of the prompt emission of GRB 990123 detected
by BATSE (Briggs et al., 1999). Right: Spectrum of the afterglow of GRB
970508 (Mészáros, 1999).

• Radiation mechanism: the prompt emission as well as the afterglow components
are non-thermal (see Fig. 2), implying the presence of relativistic particles. These
sources, then, should be able to accelerate particles up to relativistic energies.

These requirements can be achieved by invoking relativistic motions. If the emitting
region were static, the gamma-rays should have been attenuated in the source by photo-
pair production. This is known as the compactness problem. To ease this problem, a
first ingredient of theoretical models is that the regions where the prompt and afterglow
emission are produced must be moving relativistically in the direction of the observer
(see Zhang & Mészáros 2004 for a detailed discussion of the compactness problem).

The typical Lorentz factor required to satisfy the observations is of the order of
∼ 100. Relativistic jets in AGNs have Lorentz factors Γ . 30. GRBs present the fastest
known bulk motions in the universe.

One of the most discussed models is the standard fireball model, which, until a
few years ago, had been very successful describing many characteristic and predicting
several features of GRB light curves and spectra. In this model, a central engine powered
by accretion -the collapse of the nucleus of a massive star in the case of long GRBs,
or the merger of two compact objects for short GRBs- launches a fireball shell. As
the fireball propagates, internal shocks are produced by collisions between different
shells. In these shocks, particles are accelerated up to relativistic energies in the flow
co-moving frame and produce the prompt emission. The fireball shell is eventually
decelerated by the interstellar medium, and external shocks are produced. Whereas
the broad-band afterglow radiation is usually explained as the result of synchrotron
radiation of electrons accelerated in the external shocks, there is still an open debate on
what is the mechanism responsible of the non-thermal emission in the prompt phase,
i.e., synchrotron or inverse Compton scattering.

With the advent of Swift and Fermi, however, many unexpected properties have
been found. Some of these properties, such as afterglow light curves with plateau
structure, X-ray flares found at both early and late times, optical flashes too variable or
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long lasting prompt emission, cannot be explained by the standard fireball model, and
alternative options are being explored.

Among the new models, we can mention models where the jet is magnetically
dominated; in this case, the magnetic field is dragged from the highly magnetized
central engine to the surface of the progenitor star of long GRBs. Internal shocks
cannot be produced in magnetically dominated environments, so, in this context, the
particle acceleration may be caused by dissipation of the strong magnetic fields and fast
reconnection (Woosley, 1993; Komissarov et al., 2009).

4. Neutrino emission

GRBs can also be sources of three important non-electromagnetic signals: gravitational
waves, cosmic rays, and neutrinos.

High-energy neutrinos are of particular interest, since the IceCube collaboration
has recently reported the observation of 28 events, including the highest energy neu-
trinos ever observed, with energies in excess of 1 PeV (Aartsen et al., 2013; IceCube
Collaboration, 2013). GRBs are among the best candidates to be the sources of them.

GRB models involving shocks as sites to accelerate electrons which produce prompt
gamma-rays and long-term afterglows, naturally suggest that baryons should be acceler-
ated by the same shocks as well. These accelerated protons would interact with photons
and other baryons to produce high-energy neutrinos that might be detected from Earth.

In a GRB event, there are multiple sites where neutrinos with different energies are
generated. There is a large peak in the photo-meson production cross-section at photon
energies Eγ ∼ 0.35 MeV in the proton rest frame, due to the ∆-resonance (Stecker,
1973). Most of the contribution to neutrino production comes through this channel.
The condition that a proton must fulfill to create pions is (Zhang & Kumar, 2013):

EpEγ ∼ 0.147 GeV2
( Γ
1 + z

)2
, (1)

where z is the redshift. Neutrinos produced in pγ interactions have energies of Eν ≃
0.05Ep .

Several models have been devoted to study the neutrino emission from different
regions of the fireball; in what follows, some of them are briefly discussed.

4.1. Neutrinos in internal shocks
The photons produced inside the internal shocks within the fireball have typical energies
around 1 MeV. For a Lorentz factor of Γ = 100, the characteristic proton energies for
photomeson production are 106 GeV. Then, photomeson interactions in internal shocks
result in the production of neutrinos with E ∼ 1014 eV.

It has been recently shown by Reynoso (2014) that interactions in internal shocks
can also lead to the production of PeV neutrinos. They consider a two-zone model (see
also Winter et al. 2014), with an acceleration region and a cooling zone. The relation
between these regions is quantified as

t−1
esc (Ei) = ψesct

−1
acc (Ei ), (2)

where t−1
esc and t−1

acc are the escape and acceleration rates, respectively. Under this
assumption, the value of the parameter ψesc is related to the energy dependence of the
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Figure 3. Diffuse flux of muon neutrinos for ψesc = 0.25 and ψesc = 0.1 in
the left and right panels, respectively. The contribution from the acceleration
zone is marked in red and the one from the cooling zone in blue. From
Reynoso (2014).

particle distributions (e.g., Protheroe, 1999). The primary target for pγ interactions are
the synchrotron photons of the prompt emission. The diffuse neutrino flux is computed,
and it is obtained that it can reach the level of the signal recently detected by IceCube
(see Fig. 3).

For long GRBs, a different kind of internal shocks are expected in the jet interior,
as a result of the propagation of the jet inside the progenitor stars. In these shocks TeV
neutrinos can also be produced by photohadronic interactions. The neutrino signal is of
significant relevance for the so-called chocked GRBs, produced when the jet is unable
to break the stellar surface and produced an observable GRB (Mészáros & Waxman,
2001; Horiuchi & Ando, 2008). For these events, the neutrino emission may be the only
detectable signal.

4.2. Neutrinos in external shocks
External shocks are produced when the fireball of a GRB is decelerated by the surround-
ing medium: a forward shock propagates over the interstellar medium, and a reverse
shock propagates backward, inside the fireball. Photons produced in the GRB afterglow
have energies from X-ray to the optical band. Then, photohadronic interactions in the
external shocks would result in the production of TeV-PeV-EeV neutrinos (e.g., Waxman
& Bahcall, 2000; Dai & Lu, 2001; Razzaque et al., 2004). In particular, in the standard
afterglow model the reverse shock emission is thought to be responsible for the optical
flash. Since protons can be accelerated up to ∼ 1020 eV in external shocks (Gallant &
Achterberg, 1999), photohadronic interactions of these ultra-high energy protons with
optical photons allows PeV-EeV neutrino production.

4.3. Neutrinos in different scenarios
Given that the standard internal shock model has been lately under discussion, different
scenarios are being explored. In this regard, Gao et al. (2012) studied the neutrino
emission in GRBs where the prompt emission is generated in a dissipative jet, instead
of being produced in internal shocks. They explored two possibilities, baryonically or
magnetically dominated dynamics.
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Another example is the work by Gao & Mészáros (2012), in which they estimated
the neutrino flux as a result of nuclear collisions in magnetized GRBs. They obtained
a significant flux of GeV neutrinos. Murase et al. (2013), on the other hand, studied
the production of GeV neutrinos in outflows loaded with neutrons, in which nuclear
reactions result in subphotospheric gamma rays that can explain the prompt emission.

A different model has been proposed by Vieyro et al. (2013) in which TeV neutrinos
are produced by hadronic interactions in the lateral shocks formed near the stellar surface,
when the jet erupts from the star. In this work, they consider the effects of standard
neutrino oscillations, and of neutrino spin-flavor precession. The latter is the result
of a minimal extension of the Standard Model and was proposed by Akhmedov &
Pulido (2002) as a secondary mechanism responsible for the deficit of solar electron
neutrinos. The number of muon events estimated for the reverse shock region in this
model is comparable with the atmospheric muon events detected by IceCube (Abbasi
et al., 2011). Then, a multiyear integration might result in a detectable flux.

4.4. Constraining theoretical models
The study of GRBs as sources of high-energy neutrinos can help us to put constrains
to the microphysics of GRBs (Zhang & Kumar, 2013). It is worth mentioning, as an
example, the work by Gao et al. (2013), in which the implications of the non-detection
of neutrinos from the burst GRB 130427A are discussed.

They first use a general model to put constrains on the dissipation radius, the bulk
Lorentz factor and the composition of the jet. Figure 4 shows a density plot of the
expected number of neutrino events for the burst GRB 130427A. The contours indicates
the regions where one event is expected, for different values of the parameters ǫ p, ǫe and
ǫB; these quantities represent the fraction of the total energy of the jet that is dissipated
and carried by protons, leptons and turbulent magnetic fields, respectively.

They also apply an internal shock model and a baryonic model to this burst, and
obtained limits for the relevant parameters of each model. The most strict restrictions
are found for the magnetic photospheric model, where a value of ǫ p/ǫe ∼ 2 is obtained,
independently of Γ. The internal shock and the baryonic photosphere models are barely
constrained by the absence of neutrino detection.

5. Summary and discussion

GRBs are currently regarded by many as the top potential high-energy neutrino sources.
Several models of neutrino emission in GRBs predict detectable neutrino levels at
different energies.

Current upper limits set by IceCube, however, have already ruled out the validity
of some of these models and their predictions (Desiati et al., 2012). The upper limit
obtained with the data collected with the 59-string configuration of IceCube is 3.7 times
below some theoretical predictions.

This overestimation of the neutrino fluxes may be the result of several simplifica-
tions in the treatment of physical processes. On the one hand, many of these works do
not consider the energy dependence of particle distribution, but instead only the energy
budget is analysed. Hümmer et al. (2010) discussed the importance of considering the
energy dependence, and they found that the normalization of the expected neutrino flux
is reduced up to one order of magnitude, and the spectrum shifts to higher energies (see
also Hümmer et al. 2012).
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Figure 4. Map of the expected neutrino events in IceCube for GRB
130427A. Here, ǫe = 0.1 and ǫB = 0.01. From Gao et al. (2013).

On the other hand, the effects of magnetic field on the cooling of secondary particles
cannot be neglected, since the GRB environments usually present large magnetic fields,
hence synchrotron losses are significant (Li et al., 1996; Reynoso & Romero, 2009;
Hümmer et al., 2012).

There are some current studies where the effects mentioned above are considered;
these models predict neutrinos fluxes that might be detected by Ice Cube. With the recent
completion of IceCube and the increment of the data, the study of neutrino emission
might help shed light on some of the most important uncertainties in the study of GRBs,
as the role of magnetic fields in the jet dynamic, and the content and composition of the
fireball.

Recent works by Mészáros & Rees (2010); Gao et al. (2011); Berezinsky & Blasi
(2012); Vieyro et al. (2013) have extended the calculations of neutrino emission to
Population III GRBs. These stars are supposed to have been very massive, and accretion
onto massive black holes (tenths of solar masses) might lead to a scaled-up collapsar
gamma-ray burst (Mészáros & Rees, 2010). These events are of particular cosmological
interest, since they are related to the first stars formed in the universe, and they can be
used to study the universe in the re-ionization era.
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Abstract. We examine the shadow of a rotating Kaluza-Klein black hole in
Einstein gravity coupled to a Maxwell field and a dilaton. The size and the shape
of the shadow depend on the mass, the charge, and the angular momentum of the
compact object. For a given mass, the size increases with the rotation parameter
and decreases with the electric charge. The distortion with respect to the non
rotating case grows with the charge and the rotation parameter. For fixed values
of these parameters, the shadow is slightly larger and less deformed than in the
Kerr-Newman case.

1. Introduction

The study of gravitational lensing by black holes has received great attention in the
last decade, due to the evidence of the presence of supermassive compact objects at
the galactic centers. The apparent shapes (or shadows) of non-rotating black holes are
circular, but rotating ones present a deformation produced by the spin; topic recently
investigated by several researchers, both in Einstein gravity and in modified theories,
with the expectation that direct observation of black holes will be possible in the near
future. The analysis of the shadows will be a useful tool for obtaining properties
of astrophysical black holes and comparing different gravitational theories. Here we
consider the shadow cast by a Kerr and by a Kaluza-Klein rotating dilaton black hole
with charge, corresponding to a coupling parameter γ =

√
3. We pay special attention

to the analysis of the shadow of the supermassive black hole in the center of our galaxy.

2. The Kerr case

In Boyer-Lindquist coordinates, the Kerr solution has the line element (G = c = 1)

ds2 = −(1 − 2Mr
Σ

)dt2 − 4Mar sin2 θ

Σ
dϕdt +

Σ

∆
dr2 + Σdθ2

+
[
(r2 + a2)2 − ∆a2 sin2 θ

] sin2 θ

Σ
dϕ2, (1)

where Σ = r2+a2 cos2 θ,∆ = r2−2Mr+a2, and a = J/M is the rotation parameter. The
horizons are obtained by solving the equation ∆ = 0, which gives r± = M2±

√
M2 − a2,

where r+ is the outer (event) horizon and r− is a Cauchy inner horizon. Kerr spacetime
is stationary and axisymmetric. These symmetries have associated Killing vectors,
so pt = −E y pϕ = Lz are conserved along the geodesic movement of a particle.
There is an additional hidden symmetry associated to a fourth conserved quantity, the
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Carter constant (Chandrasekhar 1992). The geodesic structure is determined from the
Hamilton-Jacobi equation:

∂S
∂λ
= −1

2
gσν ∂S
∂xσ

∂S
∂xν
, (2)

where λ is an affine parameter along the geodesics, gσν is the metric tensor, and S is
the Jacobi action. When the problem is separable, S can be written in the form

S =
1
2
µ2λ − Et + Lzϕ + Sr (r) + Sθ (θ), (3)

where µ is the particle mass. The equations of motion result from pν = ∂S/∂xν . In the
case of photons (µ = 0), one can obtain that

Σ
dt
dλ
=

1
∆

[
(r2 + a2)2 − ∆a2 sin2 θ − 2Marξ

]
, Σ

dr
dλ
=
√
R,

Σ
dθ
dλ
=
√
Θ, Σ

dϕ
dλ
=

1
∆

[
2Mar + (Σ − 2Mr)ξ csc2 θ

]
.

with
R (r) =

[
(r2 + a2)E − aLz

]2 − ∆
[
K + (Lz − aE)2

]
, (4)

Θ(θ) = K + cos2 θ
[
a2E2 − L2

z csc2 θ
]
. (5)

The unstable orbits of photons with constant r satisfy the conditions R = 0 and dR/dr =
0. For a Kerr black hole, the radius solution to this system of equations depends on
the trajectory of the photon. One can establish a relation between this radius and the
conserved quantities, so the system of equations can be solved for the impact parameters
ξ = Lz/E y η = K /E2. The physical solution is given by

ξ (r) =
(r2 − a2)M − ∆r

a(r − M )
, η(r) =

r3
[
4M∆ − r (r − M )2

]
a2(r − M )2 . (6)

The parameters ξ and η above correspond to the unstable photon orbits. The apparent
position of the photon sphere in the sky of a distant observer, generates the contour of
the shadow. The “celestial” coordinates of the observer are defined as follows: α is the
apparent perpendicular distance of the image as seen from the axis of symmetry, and β
is the apparent perpendicular distance of the image from its projection on the equatorial
plane. For an angle of observation θ0 with respect to the equatorial plane, they take the
form (Vázquez et al. 2004)

α = −ξ csc θ0 and β = ±
√
η + a2 cos2 θ0 − ξ2 cot2 θ0. (7)

In the Schwarzschild case (a = 0) the apparent shape of the photon sphere is a circle of
radius 3

√
3M , while for a , 0 the contour has an asymmetric form because co-rotating

photons interact with a more intense potential than counter-rotating ones, producing
a closer approach to the black hole in the former case. An observer located in the
equatorial plane of the object (θ0 = π/2) is natural when considering the Galactic center
supermassive black hole, in this case Eqs. (7) take the form α = −ξ and β = ±√η.
Besides, the effects of rotation are stronger when seen from this plane. For more details,
see for example Chandrasekhar (1992).
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3. Kaluza-Klein rotating black hole

The action corresponding to standard gravity coupled to the Maxwell field Fσν and the
(scalar) dilaton field φ, in units such that 16πG = c = 1, reads

S =
∫

d4x
√−g

[
−R + 2(∇φ)2 + e−2γφF2

]
, (8)

where R is the Ricci scalar. Exact stationary rotating solutions are only known for
certain values of the coupling parameter; γ =

√
3 leads to the so called Kaluza-Klein

rotating black hole, which is obtained by taking the product of the four dimensional
Kerr metric, in the Boyer-Lindquist coordinates, with an extra dimension possessing
translational symmetry, and then making a boost transformation with velocity v along
the fifth dimension. The four dimensional section has the form (Frolov et al. 1987;
Horne et al. 1992)

ds2 = −1 − Z
B

dt2 − 2aZ sin2 θ

B
√

1 − v2
dtdϕ +

BΣ
∆0

dr2 + BΣdθ2

+

[
B(r2 + a2) + a2 Z

B
sin2 θ

]
sin2 θdϕ2, (9)

where Σ = r2+a2 cos2 θ, ∆0 = r2−2mr+a2, B =
√

1 + Zv2/(1 − v2), and Z = 2mr/Σ,
with m the mass and a the rotation parameter of the original Kerr solution. The
metric (9), along with the electromagnetic vector field At = (1/2)v(1 − v2)−1Z B−2,
and Aϕ = −(1/2)av(1 − v2)−1/2Z B−2 sin2 θ, and the dilaton field φ = −(

√
3/2) log B,

is a solution of the equations of motion corresponding to the action (8) for γ =
√

3.
The geometry (9) is asymptotically flat and represents a black hole with physical mass
M = m

[
1 + (1/2)v2 (1 − v2)−1

]
, charge Q = mv(1 − v2)−1, and angular momentum

J = ma(1 − v2)−1/2. The physical rotation parameter is defined by A = J/M . The
sign of the charge Q is determined by the sign of v, due to the physical bound |v | < 1;
if v = 0 one recovers the Kerr solution. The roots of Σ and ∆0 are associated to a
curvature singularity at r = 0 and θ = π/2, and to regular horizons, respectively. The
event horizon is located at r+ = m+

√
m2 − a2, and exists if m2 ≥ a2. We adopt M = 1,

which is equivalent to adimensionalize all quantities with M .
From the Hamilton-Jacobi equation, for null geodesics (µ = 0) one can obtain the

corresponding equations of motion (Amarilla et al. 2013):

BΣ
dt
dλ
=

2mr
∆0

[
(r2 + a2)

(
1
Z
+

v2

1 − v2

)
E + a2E sin2 θ − aLz√

1 − v2

]
,

BΣ
dr
dλ
=
√
R, BΣ

dθ
dλ
=
√
Θ, BΣ

dϕ
dλ
=

2mr
∆0

(
aE√

1 − v2
− Z − 1

Z
Lz csc2 θ

)
,

where the function R (r) has the form

R = RKerr +
2r

{[
(aE − Lz)2 − 2L2

z − K + 2E2r2
]
v2 + 4aLzE(1 −

√
1 − v2)

}
2 − v2 , (10)
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andΘ(θ) is given by Eq. (5). The photon sphere conditions R (r) = 0 and dR (r)/dr = 0
are fulfilled by the impact parameters

ξ (r) =
2(a2 − r2)

√
1 − v2 + ∆0

√
ϑ

ζ
,

η(r) =
r2

ζ2

{
4∆0
√
ϑ
√

1 − v2 + 2a2r (2 − v2)2 + 4a2v2(1 − v2)

− r

2 − v2

[
8r (5 + (r − 4)r) + 4(8 − r (31 + 3(r − 6)r))v2

+2(−32 + r (58 + 3(r − 8)r))v4 − (r − 4)2(r − 2)v6
]}
, (11)

where ϑ = r[2v2 + r (2 − v2)](2 − v2) and ζ = a[2(1 − v2) − r (2 − v2)]. The celestial
coordinates of the contour of the shadow are determined by replacing these equations in
Eqs. (7), which are also valid for this spacetime. For an equatorial observer (θ0 = π/2)
these equations simplify to α = −ξ and β = ±√η.

The shadow can be characterized by using two observables (Hioki et al. 2009).
The observable Rs is defined as the radius of a reference circle passing by three points
of the shadow: the top position (αt, βt ), the bottom position (αb, βb), and the point
corresponding to the unstable retrograde circular orbit seen by an observer on the
equatorial plane (αr, 0). The distortion parameter δs is defined by the quotient D/Rs,
where D is the difference between the endpoints of the circle and of the shadow, both of
them at the opposite side of the point (αr, 0). The radius Rs gives the approximate size
of the shadow, while δs measures its deformation with respect to the reference circle.
If the inclination angle θ0 is independently known, measurements of Rs and δs could
serve to find the physical rotation parameter A and the charge Q (adimensionalized
with M). These observables are given by Rs = [(αt − αr )2 + β2

t ][2|αt − αr |]−1 and
δs = (α̃p − αp)R−1

s , where (α̃p, 0) and (αp, 0) are the points where the reference circle
and the contour of the shadow cut the horizontal axis at the opposite side of (αr, 0),
respectively.

In Fig. 1, the borders of the shadows of Kaluza-Klein black holes are shown for
different values of the physical rotation parameter A and the electric charge Q, with
0 ≤ |Q | ≤ Qmax (A). The case A = 0 is shown in the left plot; the size of the shadow
decreases with Q, from Rs = 3

√
3 until it shrinks to a point when Q = Qmax (0) = 2.

This is a remarkable feature of this theory, compared with the Reissner-Nordström
General Relativity solution for which Rs = 3

√
3 when Q = 0, and reaching a minimum

size Rs = 4 in the extremal case Q = 1. The center and right plots show the shadows
corresponding respectively to A = 0.5 and A = 0.9; again, the size of them decreases
with Q, starting from the same value as for the Kerr solution for fixed A and Q = 0, and
reaching different extremal sizes for fixed A and Q = Qmax (A), when compared with
those found for the Kerr-Newman solution. The maximum allowed charge for fixed A
is larger than for Kerr-Newman ones, so they can have larger amounts of charge before
becoming naked singularities. The shadows of Kaluza-Klein black holes are always
bigger than those of Kerr-Newman ones, for the same values of A and Q. In Fig. 2
(left), the observable Rs is plotted as a function of Q, for several values of A: it decreases
with Q for all A, and the values of Rs are similar for the different values of A considered
in the plot; from the frame inside, where the range of Q is smaller, it can be seen that Rs

increases with A. Each curve ends when the horizon fade out and a naked singularity
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Figure 1. Shadow contours (θ0 = π/2). Left: A = 0, Q = 0 (dashed-
dotted), 0.5 (dashed), and 1.99 (dotted); center: A = 0.5, Q = 0 (dashed-
dotted), 0.5 (dashed), and Qmax = 1.1298 (dotted); right: A = 0.9, Q = 0
(dashed-dotted), 0.3 (dashed), and Qmax = 0.4583 (dotted).
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Figure 2. Observables (θ0 = π/2). Left and center: plots of Rs and δs for
A = 0 (full), A = 0.5 (dashed), and A = 0.9 (dashed-dotted). Right: contour
plots of Rs (full) and δs (dashed).

is formed, for the value Qmax (A). In Fig. 2 (center), the observable δs is plotted as a
function of Q; it increases with the charge until a maximum distortion, obtained when
Qmax (A). The distortion is an increasing function of A for a fixed value of Q. For the
same values of A and Q, the shadows corresponding to Kaluza-Klein black holes are
less distorted than the shadows of Kerr-Newman ones. In Fig. 2 (right), the contour
curves with constant Rs and δs are shown in the plane (A,Q); the gray zone representing
naked singularities is outside the scope of this work, the boundary corresponds to the
curve Qmax (A). The values of A and Q an be extracted from the intersection of the
curves with constant Rs and δs; there is no ambiguity because these curves intersect
each other in a unique point.

The angular size of the shadow can be estimated by θs = Rs/Do, with Do the
distance between the black hole and the observer. In the case of the supermassive
Galactic black hole Sgr A* (Guillesen et al. 2009), for which M = 4.3 × 106 M⊙ and
Do = 8.3 kpc, and taking θ0 = π/2, the results are shown in the following table:
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K N KK RD
A = 0 | Q 0 0.25 0.5 0 0.25 0.5
θs (µas) 26.5718 26.2916 25.4047 26.5718 26.2959 25.4763
δs (%) 0 0 0 0 0 0

A = 0.5 | Q 0 0.2 0.4 0 0.2 0.4
θs (µas) 26.5735 26.3951 25.8419 26.5735 26.3968 25.8707
δs (%) 3.05086 3.19113 3.69364 3.05086 3.18884 3.64816

A = 0.9 | Q 0 0.05 0.1 0 0.05 0.1
θs (µas) 26.5855 26.5744 26.5413 26.5855 26.5745 26.5414
δs (%) 13.8666 13.9301 14.1248 13.8666 13.9300 14.1236

From the table one can see that a resolution of the order of 0.01 µas or better is needed
to observe deviations from General Relativity.

4. Discussion

We have investigated the shadow due to a spinning charged dilaton black hole, with
coupling constant γ =

√
3, corresponding to a Kaluza-Klein reduction to four spacetime

dimensions. We have obtained that, for fixed rotation parameter, mass, and charge, the
presence of the dilaton results in a shadow that is slightly larger and with a reduced
deformation, compared with the Kerr-Newman one.

In the next years, direct imaging of black holes will be possible (Johannsen et al.
2012). The Event Horizon Telescope, consisting of radio-telescopes scattered over the
Earth, will reach a resolution of 15 µas at 345 GHz. RadioAstron is a space-based
radio telescope launched in 2011, capable of carrying out measurements with 1-10
µas angular resolution. The space-based Millimetron mission may provide the angular
resolution of 0.3 µas or less at 0.4 mm. The MAXIM project is a space-based X-ray
interferometer with an expected angular resolution of about 0.1 µas. These instruments
will be capable of observing the shadow of the supermassive Galactic black hole and
those corresponding to nearby galaxies. However, in order to detect the deviations
of General Relativity analyzed in this work, more advanced instruments with a better
angular resolution is required.

Acknowledgments. This work was supported by CONICET and UBA.

References

Amarilla, L. & Eiroa, E. F. 2013, Phys. Rev. D, 87, 044057
Chandrasekhar, S. 1992, “The mathematical theory of black holes”, Oxford U. P.
Frolov, V. P., Zelnikov, A. I. & Bleyer, U. 1987, Ann. Phys. (Berlin), 499, 371
Guillesen et al. 2009, Astrophys. J., 692, 1075
Hioki, K. & Maeda, K. I. 2009, Phys. Rev. D, 80, 024042
Horne, J. H. & Horowitz, G. T. 1992, Phys. Rev. D, 46, 1340
Johannsen, T. et al. 2012, Astrophys. J., 758, 30
Vázquez, S. E. & Esteban, E. P. 2004, Nuovo Cim., 119B, 489



Gravitation, Relativistic Astrophysics and Cosmology
Second Argentinian-Brazilian Meeting, 2014
G. S. Vila, F. L. Vieyro and J. Fabris, eds.

Constraints on cosmological parameters from Planck and BICEP2
data

Luis A. Anchordoqui
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Abstract. We show that the tension introduced by the detection of large am-
plitude gravitational wave power by the BICEP2 experiment with temperature
anisotropy measurements by the Planck mission is alleviated in models where
extra light species contribute to the effective number of relativistic degrees of
freedom. We also show that inflationary models based on S-dual potentials are
in agreement with Planck and BICEP2 data.

1. Fitting ΛCDM + r to Planck and BICEP2 data

Measurements of the cosmic microwave background (CMB) and large scale structure
(LSS) indicate that we live in a spatially-flat, accelerating, infinite universe composed
of 4% of baryons (b), 26% of (cold) dark matter (CDM), and 70% of dark energy
(Λ). These observations also reveal that the universe has tiny ripples of adiabatic,
scale-invariant, Gaussian density perturbations. The favored ΛCDM model implicitly
includes the hypothesis of a very early period in which the scale factor of the universe
expands exponentially: a ∝ eHt , where H = ȧ/a is the Hubble parameter (see e.g.
Baumann 2009). If the interval of exponential expansion satisfies ∆t > N/H , with
N above about 50 to 60, a small casually connected region can grow sufficiently to
accommodate the observed homogeneity and isotropy, to dilute any overdensity of
magnetic monopoles, and to flatten the spatial hyper-surfaces (i.e., Ω ≡ 8πρ

3MPlH2 → 1,
where MPL = G−1/2 is the Planck mass and ρ the energy density; throughout we use
natural units, c = ~ = 1). Quantum fluctuations during this inflationary period can
explain the observed cosmological perturbations.

Fluctuations are created quantum mechanically on subhorizon scales with a spec-
trum of wavenumbers k. (A mode k is called superhorizon when k < aH and subhorizon
when k > aH .) While comoving scales, k−1, remain constant the comoving Hubble ra-
dius, (aH )−1, shrinks quasi-exponentially during inflation (driving the universe toward
flatness) and the perturbations exit the horizon. Causal physics cannot act on superhori-
zon perturbations and they freeze until horizon re-entry at late times. A mode exiting
the horizon can then be described by a classical probability distribution with variance
given by the power spectrum Pχ (k). After horizon re-entry the fluctuations evolve into
anisotropies in the CMB and perturbations in the LSS. The scale-dependence of the
power spectrum is defined by the scalar spectral index, ns − 1 ≡ d lnPχ/d ln k, and its
running αs ≡ dns/d ln k. The power spectrum is often approximated by a power law
form: P(k) = As (k∗) (k/k∗)ns−1+ 1

2αs ln
(

k
k∗
)
+· · · , where k∗ is an arbitrary reference that

typifies scales probed by the CMB.
63
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The Planck temperature spectrum at high multipoles (l & 40) describes the
standard spatially-flat ΛCDM 6-parameter model {Ωbh2, ΩCDBh2, Θs, τ, ns, As } with
high precision: (i) baryon density, Ωb = 0.02207 ± 0.00033; (ii) CDM density,
ΩCDMh2 = 0.1196 ± 0.0031; (iii) angular size of the sound horizon at recombination,
Θs = (1.04132 ± 0.00068) × 10−2; (iv) Thomson scattering optical depth due to reion-
ization, τ = 0.097 ± 0.038; (v) scalar spectral index, ns = 0.9616 ± 0.0094; (vi) power
spectrum amplitude of adiabatic scalar perturbations, ln(1010 As ) = 3.103±0.072 (Ade
et al. 2014b). Planck data also constrain the Hubble constant h = 0.674 ± 0.012 and
ΩΛ = 0.686 ± 0.020. (Herein we adopt the usual convention of writing the Hubble
constant at the present day as H0 = 100 h km s−1 Mpc−1.) Note, however, that the data
only measure accurately the acoustic scale, and the relation to underlying expansion pa-
rameters (e.g., via the angular-diameter distance) depends on the assumed cosmology,
including the shape of the primordial fluctuation spectrum. Even small changes in model
assumptions can change h noticeably. Unexpectedly, the H0 inference from Planck data
deviates by more than 2σ from the previous result from the maser-cepheid-supernovae
distance ladder h = 0.738 ± 0.024 (Riess et al. 2011). The impact of the Planck h esti-
mate is particularly important in the determination of the number of “equivalent” light
neutrino species: Neff (Steigman et al. 1977). Combining observations of the CMB
with data from baryon acoustic oscillations (BAO), the Planck Collaboration reported
Neff = 3.30±0.27 (Ade et al. 2014c). However, if the value of h is not allowed to float in
the fit, but instead is frozen to the value determined from the maser-cepheid-supernovae
distance ladder the Planck CMB data then gives Neff = 3.62±0.25, which suggests new
neutrino-like physics (at around the 2.3σ level).

Inflation also produces fluctuations in the tensor part of the spatial metric. The
gravity-wave fluctuations are also frozen on super-horizon scales and their B-mode

power spectrum, Ph = At

(
k
k∗

)nt+ 1
2αt ln

(
k
k∗
)
+· · ·
, can be imprinted in the CMB tempera-

ture and polarization. We define the tensor-to-scalar amplitude ratio r = At/As as the
free parameter for the ΛCDM + r model.

Figure 1. Marginalized joint 68% CL and 95% CL regions for (r, ns) using
Planck + WMAP + BAO data without a running spectral index (left), BICEP2
data with αs , 0 (middle), and Planck + WMAP + BAO data with αs , 0
(right).

As the BICEP2 Collaboration carefully emphasized (Ade et al. 2014a), the mea-
surement of r = 0.2+0.07

−0.05 (or r = 0.16+0.06
−0.05 after foreground subtraction, with r = 0

disfavored at 5.9σ) from the B-mode polarization appears to be in tension with the
95% CL upper limits reported by the WMAP (r < 0.13, Hinshaw et al. 2009) and
Planck (r < 0.11, Ade et al. 2014b) collaborations from the large-scale CMB tem-
perature power spectrum. As shown in Fig. 1, extension of the 7-parameter model to
include non-zero running of the spectral index ameliorates the tension. However, the
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combination of Planck and BICEP2 data favors αs < 0 at almost the 3σ level, with
best fit value around αs = −0.028 ± 0.009 (68%CL) (Ade et al. 2014a). This is about
100 times larger than single-field (φ) inflation would predict. Such a particular running
can be accommodated, however, if V ′′′/V is roughly 100 times larger than the natural
expectation from the size of V ′/V ∼ (10MPl)−1 and V ′′/V ∼ (10MPl)−2, where V (φ)
is the inflaton potential (Smith et al. 2014). In Fig. 2 we compare the aftermath of the
multiparameter fit of {Ωbh2, ΩCDBh2, Θs, τ, ns, As, r, Neff,

∑
mν} to the data reported

by the Planck and BICEP2 collaborations (Dvorkin et al. 2014; Anchordoqui et al.
2014a). Clearly, a higher effective number of relativistic species can relieve the tension
between Planck and BICEP2 results. As shown in Fig. 3, the best multiparameter fit
yields Neff = 0.81 ± 0.25 and h = 0.70 ± 0.01, which are consistent with previous
measurements.

Figure 2. Left: Marginalized joint 68% CL and 95% CL regions for (r, ns )
using Planck + WMAP + BAO with and without a running spectral index,
BICEP2 data with αs , 0 and allowed regions of the 9-parameter fit. Middle:
68% and 95% confidence regions for ΛCDM + Neff , using Planck + WMAP
(pink) and Planck + WMAP + BAO (yellow) data, together with allowed
regions of the 9-parameter fit (green) together . Right: 68% and 95% confi-
dence regions of the 9-parameter fit. The horizontal lines indicate the 95%
CL upper limits on

∑
mν.

We end with an observation: that one should keep in mind that there is an on going
controversy concerning the effect of background on the BICEP2 result (Liu et al. 2014;
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Figure 3. Recent H0 (left) and Neff (right) measurements and the 1σ con-
fidence intervals from various combinations of models and data sets.
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Flauger et al. 2014). In the next section we play devil’s advocate and assume that the
BICEP2 results are flawed.

2. S-dual Inflation

Planck data favor standard slow-roll single field inflationary models with plateau-like
potentials V (φ) for which V ′′ < 0, over power-law potentials. However, most of these
plateau-like inflaton potentials experience the so-called “unlikeliness problem” (Ijjas et
al. 2013). The requirement that V ′′ < 0 in the de Sitter region, and the avoidance of
the unlikeliness problem, must now also accommodate (if possible) the tensor-to-scalar
ratio detected by BICEP2 data. Finally, a wish rather than a constraint: that the inflaton
potential possess some connection to particle physics. To this end, we hypothesize that
the potential be invariant under the S-duality constraint g → 1/g, or φ → −φ, where φ
is the dilaton/inflaton, and g ∼ eφ/M .1 Here M is expected to be within a few orders of
magnitude of MPl. This requirement forces the functional form V (φ) = f [cosh(φ/M )]
on the potential. In what follows we take for V the S self-dual form V1 = V0 sech(φ/M ),
and V2 = V0

[
sech(3φ/M ) − 1

4sech2(φ/M )
]
, which solve the unlikeliness problem

because they have no power-law wall. For V1, as for power-law inflation (with an
exponential potential), inflation does not end. We assume that the dynamics of a second
field leads to exit from the inflationary phase into the reheating phase. The requirement
that there be 50 to 60 e-folds of observable inflation yields M & 1.4MPl, constraining
the available region in the r − ns plane. As can be seen in Fig. 4, the allowed region
is consistent with both Planck and BICEP2 data. (Details of the calculation are given
in Anchordoqui et al. 2014b). However, as anticipated above, the prediction for αs
is about 100 times smaller than the observed 68% confidence regions, see Fig. 5. For
αs , 0, agreement with data is only attained at 95% CL.

Figure 4. Available parameter space to the potential V1 (left) and V2 (right)
together with favored regions by Planck and BICEP2 data (Anchordoqui et al.
2014b). For V2, N > 60 corresponds to r . 0.1

1String theory exhibits various forms of dualities, i.e. relation between different theories at large and small
radii of the compactified manifold (traget space duality, or T duality, Giveon et al. 1994) and at strong and
weak coupling (S duality, Font et al. 1990). At the classical level, these dualities appear in equations of
motion and in their solutions. Herein we do not attempt a full association with a particular string vacuum,
but simply regard the self-dual constraint as a relic of string physics in big bang cosmology.
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Figure 5. The blue regions show the predictions of α2 for the parameter
space available to V1 (left) and V2 (right) after fixing r to be within the 68%
and 95% CL regions of BICEP2 measurements. The red areas show the
68% and 95% CL regions favored by a combination of Planck data, WMAP
polarization data and small scale CMB data (Ade et al. 2014b).
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approach and relativistic Boltzmann equation in the Newtonian
approach
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Abstract. In this work we analyze the dynamics of collisionless self-gravitating
systems described by the f (R)-gravity and Boltzmann equation in the weak field
approximation, focusing on the Jeans instability for theses systems. The field
equations in this approximation were obtained within the Palatini formalism.
Through the solution of coupled equations we achieved the collapse criterion for
infinite homogeneous fluid and stellar systems, which is given by a dispersion
relation. This result is compared with the results of the standard case and the
case for f (R)-gravity in metric formalism, in order to see the difference among
them. The limit of instability varies according to which theory of gravity is
adopted.

1. Introduction

The General Relativity (GR) has emerged as a highly successful theory for cosmological
models, surviving various tests. In search of a generalization of GR emerged a theory of
gravity known as modified f (R)-gravity. An important consequence of this new theory
resides in the fact that it is no longer necessary to introduce unknown entities to explain
the accelerated expansion of the Universe and the formation of structures. Searching
for further generalization, it was introduced also the Palatini formalism where the most
fundamental aspect to be noted is the independence, a priori, between the metric tensor
and affine connection.

In this work, in order to study the formation of structures, we adopt a model
described by f (R)-gravity from the point of view of the Palatini approach, which is
able to describe the dynamics and the collapse of collisionless self-gravitating systems.
To investigate this dynamics, it becomes necessary the introduction of the collisionless
Boltzmann and Poisson equations for the fields. The Boltzmann equation is an essential
tool for the understanding of the processes that occurs in interstellar clouds, as the
damping waves perturbations. Here we investigated the Jeans instability for physical
systems that exhibit weak gravitational field, with slow variation or static and objects
which moves slowly compared to the speed of light. This instability causes the collapse
of interstellar gas clouds and hence, the formation of structures. This occurs when the
internal pressure of the gas is not enough to prevent gravitational collapse. The aim
of this work is to show the difference in the behavior between the solutions obtained
from this model and from those obtained by f (R)-gravity in the metric formalism in the
Newtonian limit (Capozziello et al., 2012) and by Newtonian gravity (see e.g. Binney
& Tremaine, 2008). Here we adopt the signature (−,+,+,+) and follow the book
(Weinberg, 1972) for the conventions of the Riemann tensor and its contractions.

69
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2. Palatini formalism for f (R)-gravity in the Newtonian limit

The action which represent the modified gravity theories reads

S =
∫

dx4√−g [− f (R)/(2κ) + Lm
]

(1)

where f (R) is an analytic function of the Ricci scalar R, κ = 8πG/c4 denotes the
gravitational field coupling and Lm is the Lagrangian density of the matter field.

From the variation of the action (1) according to the Palatini formalism we get the
modified Einstein’s field equations

f ′(R)Rµν − 1
2
gµν f (R) = −κTµν = 2κ√−g

δ
(
Lm
√−g

)

δgµν
. (2)

Above f ′ ≡ f ′(R) = df (R)/dR and Tµν is the energy-momentum tensor of the gravita-
tional sources. The Ricci tensor Rµν and the affine connection Γαµν are given in terms of
the Riemannian Ricci tensor R̃µν and connection Γ̃αµν by

Rµν = R̃µν − 3
2 f ′2
∂µ f ′∂ν f ′ +

1
f ′
∇̃µ∇̃ν f ′ +

1
2 f ′
∇̃σ∇̃σ f ′gµν, (3)

Γαµν = Γ̃
α
µν +

1
2 f ′

gλα
[
∂µ f ′gλν + ∂ν f ′gµλ − ∂λ f ′gµν

]
. (4)

In the Newtonian approach the metric tensor can be written in terms of the
Minkowski tensor ηµν plus corrections of order v2 = MG/r (Weinberg, 1972) as
g00 = −1 − g(2)

00 and gi j = δi j + g
(2)
i j . Up to this order we have

R̃(2) = −1
2
∇2g(2)

00 +
1
2
∇2g(2)

ii =
1
c2∇2 (φ − ϕ) , (5)

where φ and ϕ are gravitational potentials associated with g(2)
00 and g(2)

ii , respectively.
In this work we consider the following expression for f (R) = R + f2R2, where

f2 is a small quantity. The function proportional to R2 is not able to reproduce an
accelerated expansion of the Universe as it is currently observed. However, it should
not be a problem, since the formation of structures, which is the focus of this work,
occurred at a period much earlier than the current acceleration of the Universe. In this
case the trace of (3) in the v2 approximation reads

(
1 − 6 f2∇2

)
R(2) = R̃(2), (6)

or by considering
(
1 − 6 f2∇2

)
an invertible operator

R(2) ≈
(
1 + 6 f2∇2 + 36 f 2

2∇4
)

R̃(2)

=
1
c2

[
∇2 (φ − ϕ) + 6 f2∇4 (φ − ϕ) + 36 f 2

2∇6 (φ − ϕ)
]
, (7)
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which is an approximation up to the order f 2
2 . Since

R̃(2)
00 =

∇2g(2)
00

2
= −∇

2φ

c2 , (8)

the time component of the Ricci tensor (3) in the v2 approximation reduces to

R(2)
00 = R̃(2)

00 − f2∇2R(2) ≈ − 1
c2

[
∇2φ + f2∇4 (φ − ϕ) + 6 f 2

2∇6 (φ − ϕ)
]
. (9)

The source of the gravitational field is a pressureless fluid where the components
of the energy-momentum tensor are given by Tµν = (ρc2, 0, 0, 0) with ρ denoting the
fluid mass density.

Now the time component and the trace of Einstein’s field equations (2) together
with (7) and (9) leads to the following system of Poisson equations

∇2(φ + ϕ) − 4 f2∇4(φ − ϕ) − 24 f 2
2∇6(φ − ϕ) = 16πGρ, (10)

∇2(φ − ϕ) + 6 f2∇4(φ − ϕ) + 36 f 2
2∇6(φ − ϕ) = −8πGρ, (11)

respectively. If we sum the above equations and consider f2 = 0, the standard Poisson
equation is recovered.

3. Jeans instability in the framework of Boltzmann equation

Now the aim is to obtain from the collisionless Boltzmann equation in the Newtonian
limit a criterion for the collapse of stellar systems, which is related with a dispersion
relation. The collisionless Boltzmann equation has the following form in the Newtonian
limit

∂ f
∂t
+ (~v · ~∇r ) f − (~∇φ · ~∇v ) f = 0, (12)

where f ≡ f (~r,~v, t) is the distribution function, which gives the mass density of the
stellar system through ρ(~r, t) =

∫
f (~r,~v, t)d~v.

We consider that the self-gravitating equilibrium system – described by a time-
independent distribution function f0(~r,~v) and potentials φ0(~r) and ϕ0(~r) – is sub-
jected to a small perturbation, namely, f (~r,~v, t) = f0(~r,~v) + ǫ f1(~r,~v, t), φ(~r, t) =
φ0(~r) + ǫφ1(~r, t) and ϕ(~r, t) = ϕ0(~r) + ǫϕ1(~r, t), where ǫ ≪ 1. The equilibrium for
a homogeneous system is achieved by Jeans "swindle" that allows us to make φ0 = 0
and ϕ0 = 0 without loss of consistency. After these considerations, we linearize the
Boltzmann (12) and the field equations (10), (11) through the substitution of the above
conditions. Subsequently we write the resulting equations in Fourier space as follows

−iω f 1 + ~v · (i~k f 1) − (i~k φ1) · ∂ f 0
∂~v
= 0, (13)

−k2(φ1 + ϕ1) − 4 f2k4(φ1 − ϕ1) + 24 f 2
2 k6(φ1 − ϕ1) = 16πG

∫
f 1d~v, (14)

k2(φ1 − ϕ1) − 6 f2k4(φ1 − ϕ1) + 36 f 2
2 k6(φ1 − ϕ1) = 8πG

∫
f 1d~v, (15)
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where the overbarred quantities indicate the Fourier transforms in the (ω, ~k) space.
By eliminating the overbarred quantities from the system of equations (13) – (15)

it follows the dispersion relation

1 +
4πG
k2

(1 − 8 f2k2 + 48 f 2
2 k4)

(1 − 6 f2k2 + 36 f 2
2 k4)

∫ *.,
~k · ∂ f0

∂~v

~v · ~k − ω
+/- d~v = 0. (16)

In stellar systems one assumes usually the Maxwell distribution function

f0(~v) =
ρ0

(2πσ2)
3
2

e−
v2

2σ2 , (17)

where σ is a dispersion velocity and ρ0 a constant mass density.
Without loss of generality we can choose ~k = (k, 0, 0) so that the dispersion relation

(16) together with (17) can be integrated with respect to the velocity components vy and
vz , yielding

k2

k2
J

− (1 − 8 f2k2 + 48 f 2
2 k4)

(1 − 6 f2k2 + 36 f 2
2 k4)

2√
π

∫ ∞

0

x2e−x2

x2 − ω2/(2σ2k2)
dx = 0. (18)

Here we have introduced the Jeans wavenumber kJ =
√

4πGρ0/σ2 and the integration
variable x = vx/(

√
2σ).

Unstable solutions are such that ℜ(ω) = 0 and ωI = ℑ(ω) > 0 (see Binney &
Tremaine, 2008). In this case the integral on the right-hand side of (18) can be evaluated
(see eq. 3.466 of Gradshteyn & Ryzhiz, 2007) and the dispersion relation (18) reduces
to

〈
9 k6

k6
J

〉
+

(
3 k4

k4
J

)
+ k2

k2
J〈

12 k4

k4
J

〉
+

(
4 k2

k2
J

)
+ 1
=

1 −
√
πωI√

8πGρ0

kJ
k

e

(
ω2
I

8πGρ0

k2
J

k2

)

erfc *,
ωI√

8πGρ0

kJ
k
+-
 . (19)

Above erfc is the complementary error function and we have introduced the same
parametrization for f2 = −1/(2k2

J ) that was adopted by (Capozziello et al., 2012). The
choice of this parameterization was made with the intention of describing a dimension-
less ratio and to compare directly with the work done in (Capozziello et al., 2012). Other
choices could have been made, but they all culminate in the same result, differing only
by constants. Without the terms within the brackets in the numerator and denominator
on the left-hand side of (19), it follows the classical dispersion relation for Newtonian
gravity. The terms within round brackets refer to the contribution of the f (R) theory
in the metric formalism (Capozziello et al., 2012), while the ones within the round and
angular brackets correspond to the Palatini formalism.

The solution of (19) for ωI = 0 furnishes the following limiting values for the
wavenumber: (a) k2 = 1.3171 k2

J for the f (R) theory in the Palatini formalism, (b)
k2 = 1.2638 k2

J for the f (R) theory in the metric formalism and (c) k2 = k2
J in the

Newtonian theory. For comparison, the dispersion relation (19) is plotted in Fig. 1
together with the results obtained from the f (R) theory in the metric formalism and
from the Newtonian gravity. The gravitational collapse occurs for the unstable wave
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Figure 1. Ratio of wavenumbers k2/k2
J versus normalized frequency

ω2
I/(4πGρ0) from the dispersion relation (19) for f (R)-gravity in Palatini formal-

ism (bold line), for f (R)-gravity in metric formalism (thin line) and for Newtonian
gravity (dashed line).

solutions where the values of k2/k2
J lie below the curves in Fig. 1. Above these values

the oscillations remain stable. We infer from this figure that the f (R) theory in the
Palatini formalism furnishes a large range of solutions than the metric one, which in its
turn is larger than the one of the Newtonian theory.

The stellar system is stable up to a critical mass and if this critical value is exceeded
the gravitational collapse occurs. In the Newtonian theory this critical value is the Jeans
mass MJ , which is defined as the mass within a sphere of diameter λJ = 2π/kJ , i.e,
MJ = 4πρ0(π/kJ )3/3. From the above results one obtain the following ratios: (a)
M/MJ = 0.662 for the f (R) theory in the Palatini formalism and (b) M/MJ = 0.704
for the f (R) theory in the metric formalism. Hence the f (R) theory in the Palatini
formalism furnishes the smallest critical mass for the occurrence of the gravitational
collapse.

4. Conclusions

The dispersion relation is a collapse criterion for infinite homogeneous fluid and stellar
systems. Here, this relation is used to study the instability of collisionless systems.
Figure 1 shows the behavior of the dispersion relation of the models: Newtonian
gravity, f (R)-gravity in the metric formulation and this one in the Palatini formalism.
It is worth stressing that the characteristic wavenumber is given in terms of the classical
one. The model proved to have a higher instability limit when compared to the others.
The collapse occurs for higher values of the wavenumber when compared with the
Jeans wavenumber, so that critical mass of interstellar clouds decreases, modifying the
initial conditions to start the collapse. The dispersion relation obtained via Palatini
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formulation differs from that obtained via metric formulation only for terms of order
up to f 2

2 ; below this order, no difference was found. The terms of order f 2
2 arise only

in the Palatini solution, when one writes the generalized Ricci scalar depending on the
usual one. Thus, we can conclude that the differences reported here are a direct result
of using the Palatini formalism.

The Jeans mass is a criterion for the study of gravitational collapse of interstellar
clouds. The cloud is stable for sufficiently small mass (at a given temperature and
radius), smaller than the limit established by Jeans mass. If this cloud exceeds this
mass limit, it starts a process of contraction until some other force can impede the total
collapse. It was shown that the Jeans mass for the systems described by f (R)-gravity via
Palatini formalism exhibits values smaller than the ones found for the metric case, and
especially for Newtonian gravitation. This demonstrates that the limit for initiating the
collapse of an interstellar cloud is below the classical limit favoring more the formation
of structures. We may interpret this result by saying that the same amount of matter is
able to produce a larger curvature, causing a larger acceleration of test particles. Hence
the test particles describe a different geodesic than that they would follow in the metric
formalism. In this way, we conclude that in the Palatini formalism of f (R) gravity the
formation of structures is more efficient than in the metric formalism of f (R) gravity
and Newtonian gravity.
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Abstract. We present a brief study of compound systems of different scales.
It is shown that the detailed dynamical studies of massless and massive particles
can hardly be associated to standard averaging techniques.

1. Introduction

Recently new expressions for the deviation angle and for the optical scalars in the study
of weak lensing have been derived in terms of curvature scalar of the lens geometry
[GM11]. This formulas, in contrast to standard treatments found in the literature, take
into account the spacelike components of the energy-momentum tensor of the lens. One
of the advantage of the new expression is that they allow us to model the lens with a
broader kind of objects.

In particular, it have been shown the case of a peculiar geometry without mass but
with non-vanishing spacelike components [GM12]. This geometry is an exact solution
of the Einstein’s equations with a non-conventional energy-momentum tensor; despite
its bizarre nature it has remarkable features, as we now mention.

It was shown that this geometry can fit the shear profile in studies of weak lensing
in Coma’s cluster.

A dynamical study of the rotation curves in this geometry shows that if the observa-
tions of the tangential velocity, vt , of the rotation curves in this geometry are interpreted
with the usual Newtonian relations

MN (r) =
rc2

G
v2
t ; (1)

it gives the expected linear growth of the deduced Newtonian mass MN (r) with the
radial coordinate. Here G is the gravitational constant and c denotes the speed of light
in vacuum.

The radial mass profile of a matter distribution deduced by means of the estimation
in the scape velocity of the system can be fitted using the radial scape velocity, ve, in
this geometry together with a Newtonian interpretation, this is associating a Newtonian
mass MN (r) given by

MN (r) =
rc2

2G
v2
e . (2)

This is pertinent to observations in systems where the issue of the missing mass,
or dark matter problem is manifest. This geometry, although a toy model since it has
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not mass density, gives account in a very acceptable way some of the features found it
in the observations of “dark matter” in astrophysical systems.

This fact rises the question about the possible nature of this peculiar solution and
its relation to the dark matter problem and also to the way in which observations are
carried out.

The study of phenomenology of dark matter in the new peculiar solutions presented
in [GM12] involves the use of two tools: The geodesic equation for massive and massless
particles, and the deviation geodesic equation for a congruence of null geodesics.

The former only contains the information that comes from the connection associated
to the geometry while the last has information of the curvature (second derivatives) of
the geometry.

We want to consider a system composed of small point-like subsystems that con-
tribute to a big complete system.

Each subsystem is considered to have very small velocity with respect to each other
so that all of them can be considered as geometric linear stationary contribution over a
common flat background.

We employ a generalization of the optical scalars for the case of a such distribution
in the approximation of thin lens.

2. The system

The distribution of the small constituents of the big system can be described in terms
of the stationary distribution function P (xi ) with i = 1, 2, 3 denoting the spacelike
coordinates of the flat background. This is a continuous distribution that models the
density of the small subsystems.

We work with several pictures in mind: Each subsystem is considered as a vacuum
gravitating central object; which therefore is associated to a Schwarzschild geometry.
We also consider the case of spherically symmetric geometries with halos which con-
tribute only to their respective Pr component of the microscopic energy-momentum
tensor. We consider astrophysical useful distributions to the energy density ̺, as is the
isothermal mass distribution.

We are assuming that the nature of the observations is such that one can consider
each subsystem and the compound system as stationary; so that we can assume the
existence of a global timelike Killing vector field, t̃a.

2.1. Decomposition of the geometry
Let us express the metric gab of the spacetime in terms of a reference metric ηab, such
that

gab = ηab + hab . (3)

Let ∂a denote the torsion free metric connection of ηab and ∇a the torsion free
metric connection of gab; then one can express the covariant derivative of an arbitrary
vector va by

∇avb = ∂avb + Γ b
a cv

c ; (4)

and one can prove that

Γ c
a b =

1
2
gcd (∂ahbd + ∂bhad − ∂dhab) = Γ c

b a . (5)
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Since we are considering contributions of many subsystems A’s, the tensor hab

must be the sum of all the contributions, namely

hab =
∑

(A)

h(A)
ab
. (6)

3. Testing a spherically symmetric system with massless particles

In reference [GM11] we have deduced the general equations for the description of
weak lensing. We will use here those that are appropriate for the study of spherically
symmetric systems.

Let us recall that the lens scalars in the thin lens approximation, in terms of the
curvature invariants Ψ0 andΦ00 associated to the Weyl’s and Ricci’s tensor respectively,
are given by

κ =
dldls

ds

∫ dls

−dl
Φ00 dy,

γ =
dldls

ds

∫ dls

−dl
|Ψ0 | dy;

(7)

where here γ refers to the modulus of the shear.
For thin lenses the bending angle is given by [GM11]

α(J) = J
(
Φ̂00(J) + Ψ̂0(J)

)
; (8)

Φ̂00 =

∫
Φ00dλ, Ψ̂0 =

∫
Ψ0dλ. (9)

This expression are valid for each subsystem.
We use J to denote the impact parameter of the null geodesic to center of the lens;

y is the Cartesian coordinate along which the photons path, λ the affine parameter along
the null geodesics and the coordinate r is satisfies r2 = J2 + y2.

The above expressions can be put in terms of the total mass, M (r) and the compo-
nents of the energy-momentum tensor of the lens, using the following relations;

Ψ0 = −3
J2

r2 Ψ̃2e2iϑ = −3
J2

r2

[
4π
3

(̺ − Pr − Pt ) − M

r3

]
e2iϑ ; (10)

where here ϑ is the angle of polar coordinates in the plane y = 0 in a Cartesian coordinate
system; and

Φ00 = 2
J2

r2

(
Φ̃11 − 1

4
Φ̃00

)
+ Φ̃00 = 4π

J2

r2

(
Pt − Pr

)
+ 4π (̺ + Pr ) . (11)

In particular, the well known results for a lens with the Schwarzschild geometry

κ(J) = 0, (12)

γ(J) =
dldls

ds

4M

J2 , (13)

α(J) =
4M

J
. (14)
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are obtained by taking ρ = Pt = Pr = 0 and M = constant with the integration limits
going to infinity.

3.1. Treatment of a compound system
When dealing with a compound system, the standard treatment find in textbooks is to
consider the situation of a monopole mass (Schwarzschild) and to generalize eq. (14)
to a vector equation in the plane of the thin lens.

Here, we generalize the bending angle equation for a an axially symmetric dis-
tribution; but before let us recall that given the scalar expression α(J) for bending
angle, one can write [GM11] the 2-dimensional equation in terms of the components of
αi = (α1, α2) as

(αi) = α(J)(
z0
J
,

x0
J

); (15)

taking into account the appropriate orientation in the two dimensional space of the
images.

3.2. Generalization for a distribution of spherically symmetric deflectors
It could be convenient to change the notation to a most common one when we consider
a distribution of sources. Then, let us denote by ξ ′ the vector in the plane of the thin
lens joining an arbitrary location in the distribution with a given point in the plane of
the lens. Then we rewrite equation (15) in the form

α̂(ξ ) = α( |ξ − ξ ′ |)
(
ξ − ξ ′

)

|ξ − ξ ′ | ; (16)

which for a macroscopic distribution P (ξ ′, y′) results in

α(ξ ) =
∫

R2

∫ ∞

−∞
P (ξ ′, y′)α( |ξ − ξ ′ |)

(
ξ − ξ ′

)

|ξ − ξ ′ | d
2ξ ′dy′; (17)

or put it in a compact form we have

α(ξ ) =
∫

R2
Σ(ξ, ξ ′)

(
ξ − ξ ′

)

|ξ − ξ ′ |2 d2ξ ′; (18)

with
Σ(ξ, ξ ′) =

∫ ∞

−∞
P (ξ ′, y′)α( |ξ − ξ ′ |) |ξ − ξ ′ |dy′. (19)

In the case of small deflectors of Schwarzschild type, α( |ξ − ξ ′ |) = 4m
|ξ−ξ′ | ; the

quantity Σ(ξ, ξ ′) represent the total mass of the distribution projected in the plane of
the thin lens. For analogy with this case we will refer to Σ(ξ, ξ ′) in the most general
case as the generalized projected mass.

4. Testing the system with massive particles

4.1. The equation of motion
The dynamics of massive particles is determined by the geodesic equation. Let the
vector ua be the four velocity of the particle, then one can express

ua∇aub = ua∂aub + uaΓ b
a cuc = 0. (20)
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Since we are assuming small velocities we can express, in first order in the velocities

ua = (1 +
u2

2
)ta + va + O (u3); (21)

where

ηabtavb = 0, (22)
ηabvavb = −u2. (23)

In this way, we see that the equation of motion can be expressed as

ta∂avb + Γ b
a ctatc + 2Γ b

a ctavc = 0; (24)

4.2. The case of spherical symmetry
A stationary spherically symmetric geometry can be expressed by

ds2 = e2Φ(r ) dt2 − dr2

1 − 2 M (r )
r

− r2
(
dθ2 + sin2 θdφ2

)
; (25)

in terms of a standard spherical coordinate system (t, r, θ, φ).
For this case one has that the non-vanishing components of the connection tensor

are

Γ r
θ θ = 2M (r), (26)
Γ r
φ φ = 2M (r) sin2 θ, (27)

Γ t
t r =

dΦ(r)
dr
, (28)

Γ r
t t =

dΦ(r)
dr
, (29)

Γ r
r r =

d
dr

(
M (r)

r

)
; (30)

where we are considering only linear terms.
Then, considering the non-zero contributions from the connection, one has

dvr

dt
= −dΦ(r)

dr
. (31)

Therefore, we have only one equation dynamically interesting.
It is important to emphasize that the notion of the r direction is dependent on the

system we are considering the interaction with. To carry out the sum over all subsystems
A it would be better to introduce a Cartesian description with respect to the background.

When the sum it is carried one obtains the Newton’s equation for a particle in a
gravitational field. Where the effective potential is given by the sum of the individual
contributions of the distribution of the form (31). In particular, when the big scale
distribution is spherically symmetric one can use the Newton’s theorem on spherical
systems to evaluate the effective potential inside of a central sphere of radius r with
respect to the origin.
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5. Summary and perspectives

We have just seen that when studying the dynamics of massive and massless particles,
while the first reduces to the simple application of Newtonian techniques, the later
is much more complicated, specially when the spacelike components of the energy
momentum tensor can not be neglected; as is the case for the geometries that we have
presented elsewhere. Therefore, the physical smoothing procedures are not necessarily
associated with standard averaging of geometrical quantities as tensors; but come from
a detailed study of the particular observation.
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Abstract. We formulate a theory combining the principles of a scalar-tensor
gravity and the Rastall proposal of a violation of the usual conservation laws.
In the resulting Brans-Dicke-Rastall (BDR) theory the only exact, static, spheri-
cally symmetric solution is a Robinson-Bertotti type solution besides the trivial
Schwarzschild one. The PPN constraints can be completely satisfied for some
values of the free parameters.The cosmological solutions display, among others,
a decelerate-accelerate transition in the matter dominated phase.

1. Introduction

The Brans-Dicke theory, the paradigma of scalar-tensor theories, is considered as an
important alternative to the theory of General Relativity (GR) (Brans & Dicke, 1962). In
this theory the gravitational coupling G is considered as a dynamical quantity represented
by the field φ which is introduced in the gravitational action through a kinetic term and
a non-minimal coupling with the usual Ricci scalar. A new parameter ω quantifies the
interaction of the scalar field and the gravitational term, such that asω → ∞ the General
Relativity theory is recovered. Recent estimates using the PLANCK data indicates a
value ω ∼ 1000 (Avilez & Skordis, 2013). In spite of those observational constraints,
small – or even negative – values of the parameterωmay be very interesting. They arise,
for example, in the string theories in their low-energy limit (Lidsey et al., 2000). When
negative values of ω are allowed, primordial singularity-free solutions emerge naturally
from the Brans-Dicke theory (Gurevich et al., 1973). Late time accelerated solution
can also be achieved, but at the price of a negative gravitational coupling (Batista et al.,
2001).

Some generalisations of GR evoke the gravitational anomaly effect, viz. Rastall’s
theory. (Rastall, 1972; 1976) These generalisations touch one of the cornerstones of
gravity theories: the conservation laws encoded in the null divergence of the energy-
momentum tensor. Since the concept of energy in GR is an object of discussion,
the possibility that the energy-momentum tensor has a non-zero divergence should be
considered in some situations. The idea of violation of the conventional conservation
laws in the context of Brans-Dicke theory has been considered by Smalley (Smalley,
1974). In this approach, the Klein-Gordon type equation for the scalar field was kept
as in the Brans-Dicke theory while the Einstein equations were changed accordingly.
Here, we would like to revisit this proposal following a different path: we try to write
down the field equations in such a way that the Brans-Dicke, GR as well as the ordinary
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the Rastall’s theory are recovered: we keep the violation of the energy-momentum
tensor in a spirit very close to the original formulation of the Rastall’s theory, and the
Klein-Gordon type equation as well as the Einstein’s equations are modified accordingly.

We investigate the resulting theory in two situations: spherically symmetrical and
cosmological configuration. In the former case, we obtain that the only non-trivial so-
lution is represented by the Robinson-Bertotti metric (Bertotti, 1959; Robinson, 1959)
(its interpretation, however, differs from the conventional one). A solution that rep-
resents a star-like configuration is the “trivial” Schwarzschild one. At cosmological
level, we show that accelerated solutions are possible in the dust phase of the cosmic
evolution without introducing dark energy. We display a particular case where a decel-
erated/accelerated transition in the recent universe is achieved with a positive effective
gravitational coupling.

2. The theory

The main idea of Rastall’s theory (Rastall, 1972) is the assumption that in curved space-
time the usual conservation laws used in GR are violated. Hence, there must be a
connection between the divergence of the energy-momentum tensor and the curvature
of the space-time. According to this program, the divergence of the energy-momentum
tensor may be written as

Tµν
;µ =

1 − λ
16πG

R,ν . (1)

In equation (1) λ is a free parameter codifying the deviation from the conservation.
When λ = 1 the traditional conservation laws are recovered. Equation (1) is a phe-
nomenological way to implement the gravitational anomaly due to quantum effects.

In the context of the Brans-Dicke theory, we can make the identification G ∝ 1
φ .

Hence,

Tµν
;µ =

(1 − λ)φ
16π

R,ν . (2)

Let us generalize Rastall’s version of the field equations to the Brans-Dicke case.
Following the original Rastall’s formulation in the context of GR, we write,

Rµν − λ2 gµνR =
8π
φ

Tµν +
ω

φ2

{
φ;µφ;ν − 1

2
gµνφ;ρφ

;ρ
}
+

1
φ

{
φ;µ;ν − gµν✷φ

}
. (3)

Combining the hypothesis (2) and (3), and using the Bianchi’s identities, we obtain
that the scalar field φ must obey the equation:

✷φ =
8πλ

3λ − 2(1 − 2λ)ω
T − ω(1 − λ)

3λ − 2(1 − 2λ)ω

φ;ρφ;ρ

φ
. (4)

Equations (2, 3, 4) form our complete system in this new formulation. When λ = 1,
the usual Brans-Dicke theory is recovered. The effective gravitational coupling today
reads:

G =
2[2λ + (3λ − 2)ω)]
3λ − 2(1 − 2λ)ω

1
φ
. (5)

When λ = 1 we obtain the corresponding expression for the Brans-Dicke theory.



A Rastall scalar-tensor theory 83

3. Spherically symmetric static vacuum solutions

The classical tests of theory of gravity are based on the motion of test particles in the
geometry of a spherically symmetric object like a star or a planet. Hence, to verify
the viability of the theory proposed, it is crucial to look for a spherically symmetric
solution. As a first step, the (exterior) solution representing the space-time of a star-like
object is considered.

In the vacuum case, the equations reduce to

R,ν = 0, (6)

Rµν − 1
2
gµνR =

ω

φ2

{
φ;µφ;ν +

λ

2(1 − 2λ)
gµνφ;ρφ

;ρ
}

+
1
φ

{
φ;µ;ν +

(1 + λ)
2(1 − 2λ)

gµν✷φ
}
, (7)

✷φ = − ω(1 − λ)
3λ − 2(1 − 2λ)ω

φ;ρφ;ρ

φ
. (8)

The first of these equations leads to R = R0 = constant. Hence, in vacuum the Ricci
scalar is necessarily constant. The case R0 = 0 corresponds to the Schwarzschild
solution of GR.

Let us consider a metric in the form:

ds2 = e2γdt2 − e2αdr2 − e2β (dθ2 + sin2 θdφ2). (9)

The functions α, β and γ depend on the radial coordinate r only. First we find that the
constant R0 is given by:

R0 = ω
{ 3 + 2ω

3λ − 2(1 − 2λ)ω

} φ;ρφ
;ρ

φ2 . (10)

Now, the D’Alambertian reads:

✷φ =

(√−ggµνφ,ν
)
,µ√−g = −e−2α[φ′′ + (γ′ + 2β′ − α′)φ′] , (11)

where g ≡ det gµν. Let us choose the radial coordinate such that α = γ + 2β. Writing
the Einsteinian equations as

Rµν =
ω

φ2

{
φ;µφ;ν +

λ − 1
2(1 − 2λ)

gµνφ;ρφ
;ρ
}
+

1
φ

{
φ;µ;ν +

λ − 2
2(1 − 2λ)

gµν✷φ
}
, (12)

we obtain, in the extended form:

γ′′ +
φ′

φ
γ′ = −ω (λ − 1)

2(1 − 2λ)

(
φ′

φ

)2
− λ − 2

2(1 − 2λ)
φ′′

φ
, (13)

γ′′ + 2β′′ − 2β′(β′ + 2γ′) − φ
′

φ
(γ′ + 2β′) = −ω 1 − 3λ

2(1 − 2λ)

(
φ′

φ

)2
+

3λ
2(1 − 2λ)

φ′′

φ
, (14)

β′′ + β′
φ′

φ
− e2(γ+β) = −ω λ − 1

2(1 − 2λ)

(
φ′

φ

)2
− λ − 2

2(1 − 2λ)
φ′′

φ
. (15)
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Equations (8, 10) lead to two supplementary equations:

R0 = −ω
{ 3 + 2ω

3λ − 2(1 − 2λ)ω

}
e−2α
(
φ′

φ

)2
, (16)

φ′′ = −ω 1 − λ
3λ − 2(1 − 2λ)ω

φ′2

φ
. (17)

The only self-consistent solution for the above equations are:

α = α0 − ln (r/r0), (18)
γ = γ0 − ln (r/r0), (19)

β = β0 =
1
2

(α0 − γ0), (20)

φ = φ0(r/r0)
1

1−A , A = −ω 1 − λ
3λ − 2(1 − 2λ)ω

. (21)

Hence, the metric is

ds2 = e2α0
dt2

(r/r0)2 − e2γ0
dr2

(r/r0)2 − eα0−γ0 dΩ2. (22)

If the scale r0 is chosen such that r2
0 = eα0−3γ0 , making redefinitions t → e−(γ0+α0 )/2,

s → e−(γ0−α0 )/2, and r → rr0, we arrive at:

ds2 =
1
r2

(
dt2 − dr2 − r2dΩ2

)
, (23)

which is the so-called Robinson-Bertotti solution that is obtained, in the context of GR,
by considering an electromagnetic field. Hence, no black hole solution is possible. This
solution appears as the only non-trivial (non-Schwarzschild solution) vacuum solution.

A PPN analysis reveal that the classical tests of a gravitation theory are equally
satisfied as in Genera Relativity if λ = 0 (Caramês et al, 2014). This makes this theory
quite competitive.

4. Cosmology

Let us consider an isotropic and homogeneous space-time described by the flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric,

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2), (24)
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and an equation of state of the type p = αρ, with α = constant. In this case the equations
of motion read:

ρ̇ + 3
ȧ
a

(1 + α)ρ = −3(1 − λ)
8π

φ
[ ...a

a
+

ȧ
a

ä
a
− 2
( ȧ

a

)3]
, (25)

3
( ȧ

a

)2
=

8πρ
φ
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] ( φ̇
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φ
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φ
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ȧ
a
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φ
=

8πλ
3λ − 2(1 − 2λ)ω

(1 − 3α)
ρ

φ
− ω 1 − λ

3λ − 2(1 − 2λ)ω

(
φ̇

φ

)2
. (28)

Equations (25)-(28) form a rich and complex system. In order to get a hint on
which kind of solutions they predict, we consider power-law solutions, in the first place.
The power-law solutions constitute a very restrictive case, but they can indicate the
kind of cosmological solution we can expect from the BDR theory. Hence, suppose
the solutions have the form a = a0ts, φ = φ0tp, ρ = ρ0tq , where a0, φ0, ρ0, s, p and
q are constants. This system admits eight pairs of roots for (s, p). For the dust case,
α = 0, one of the pairs corresponds to the Minkowski case, p = s = 0. Another one is
s = p = 1/2. A third root implies a curious configuration with s = 0 and p = 2, that
is, a static universe, with a varying gravitational coupling. Among the other five pairs,
two incorporate an accelerated regime of the expansion while remaining three describe
a decelerating universe. The overall situation is described in reference (Caramês et al,
2014), where the meaning of these different results are analysed.

The field equations depends not only on the values of λ and ω, but also on the
value of the initial conditions. We look for an example of a deceleration/acceleration
transition during the matter dominated phase (α = 0). Figure 1 shows the behaviour of
the Hubble function H = ȧ

a and deceleration parameter q = −1 − Ḣ
H2 , for ω = 1 and

λ = −1, undergoing this transition. Note that the effective G > 0 stays positive (see (5)).

5. Conclusions

In this work we have combined the idea of a scalar-tensor theory of the Brans-Dicke
type and Rastall’s proposal of a gravitational anomaly encoded in the violation of the
conventional conservation law for the energy-momentum tensor. In doing so, we end up
with two free parameters: the usual Brans-Dicke parameter ω and Rastall’s parameter
λ, representing a degree of the non-conservation.

We have investigated the BDR theory in two contexts: spherically symmetric static
solutions and cosmological regime. In the first case, we found that the only possible
non-trivial analytical solution is a Robinson-Bertotti type solution. The only possible
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Figure 1. The left panel represents the first root for s displaying acceleration
of the scale factor, the red line separating positive (left) and negative (right)
values. The left center panel represents the first root for p, the red line
separating positive (second and fourth quadrants) and negative values (first and
third quadrants). The behaviour of the Hubble function H and deceleration
parameter q for ω = 1, λ = −1 and α = 0 are displayed in the right center
and right panels.

solution in the BDR theory that can represent a star is the usual Schwarzschild solution
corresponding to the trivial configuration where the scalar field is constant.

For the cosmological case, we found power law solutions for the matter dominated
phase, some of them representing an accelerating expansion, others, decelerating. We
have shown that a decelerating/accelerating transition can be achieved in the matter
dominated phase in the BDR theory.
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Abstract. Several binary systems hosting a massive star and a companion that
is either a similar star or a compact object, present non-thermal emission from
radio to γ-rays. This non-thermal emission is the consequence of the interactions
of relativistic particles surrounded by the stellar wind. The main goal of this work
is to characterize the high-energy physics of γ-ray binaries by implementing a
general modeling for their most important high-energy processes. To thoroughly
investigate the effects of the emitter-star-observer geometry on the resulting
radiation, we sistematically applied a non-thermal leptonic model for different
locations of the emitter, magnetic fields, and acceleration timescales. The results
of this procedure are presented in the form of emissivity maps, which are useful
for exploring statistical properties of γ-ray binaries as well as their expected
distribution in the galaxy.

1. Introduction

Some of the most luminous galactic sources are high-mass binary systems in which one
of the components is a massive star of spectral type OB. This type of binaries present
non-thermal emission in the radio and X-ray bands, which suggests the presence of
a population of relativistic charged particles (e.g. Mirabel & Rodríguez 1994, Barret
2004). Also, some of these systems have been detected in high energies (HE; E > 100
MeV) and/or very high energies (VHE; E > 100 GeV) (Dubus 2013, Paredes et al
2013), which shows that they can be efficient accelerators and γ-ray emitters.

Depending on the nature of the companion (Cn), the systems can be classified as a
microquasar, a binary hosting a young pulsar, or a massive star binary. In a microquasar,
the Cn is a stellar-mass black hole (BH), or a neutron star (NS) with a weak magnetic
field, capable of accreting material coming from the star and generating relativistic jets
(Mirabel & Rodríguez 1999); in a binary with pulsar, the Cn is a young NS with a strong
magnetic field that powers an intense relativistic wind (Maraschi & Treves 1981); finally,
in a massive star binary the Cn is another massive star with a strong stellar wind (e.g.
Eichler & Usov 1993, Benaglia & Romero 2003). Note that the high-energy phenomena
is similar in all these systems, which in many cases leads to uncertainties in determining
the nature of the Cn.

The non-thermal emission from high-mass binaries is generated by ultra-relativistic
particles accelerated, generally, in strong shock-waves in plasma flows. The non-thermal
energy could be supplied by accretion and transported by jets in microquasars, or carried
by supersonic winds of massive stars or the relativistic wind of a pulsar. Most of the
accelerated particles cool down locally through interactions with the medium matter,
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magnetic and radiation fields. The result at high energies of these interactions depends
strongly on the massive star, as it provides targets (mostly ultraviolet photons) for Inverse
Compton (IC) scattering, and target atomic nuclei for proton-proton interactions and
relativistic Bremmstrahlung, among other radiation processes. Under general conditions
within gamma-ray binaries (i.e., magnetic field strengths of the order of 1 G and photon
field energy densities of the order of 1 erg/cm3), however, leptons cool down and radiate
more efficiently than hadrons. Additionally, the radiation coming from the inner regions
of a high-mass binary is likely to undergo absorption due to pair creation in the stellar
radiation field (for an assessment of the importance of the different processes, see
Bosch-Ramon & Khangulyan 2009).

In this work, we take advantage of the few assumptions required by a simple
model, which can be useful to sketch in a generic way the physical properties of these
objects. Considering the present and future observational developments, which imply
an increase in the quantity of known sources, we apply this model to investigate in detail
the physical processes that underlie their high-energy emission.

The structure of this article is as follows: in Section 2, we present the most
important aspects of the one-zone model; in Section 3, we apply this tool for different
choices of the relevant state parameters; and finally, in Section 4, we discuss our results
in the context of the current observational data, and summarize the main conclusions of
this work.

2. Model

From a generic point of view, high-mass binary systems can be characterized by the
presence of a massive star and an accelerator of relativistic particles. We consider both
the massive star and the accelerator as point-like objects, and thus homogeneous. In
addition, the accelerator and the emitter are assumed steady and co-spatial, as electrons
cannot travel long distances while emitting because of the short cooling timescales. This
is known as a one-zone model, which is the simplest model capable of incorporating
the most relevant physical processes of a given system, and of reproducing the main
features of its observable quantities.

The injection of relativistic electrons in the emitter is taken to follow an energy
distribution Q(E) ∝ E−2 exp (−E/Emax) for energies above 1 GeV up to few Emax
(the cutoff energy), consistent with a Fermi I acceleration process. The restriction of
our analysis to particles with energy above 1 GeV is in order to concentrate on the
emission above GeV energies; moreover, the most energetic particles cool down faster
and therefore locally, which allows us to neglect the non-radiative losses (i.e., particle
escape and adiabatic cooling). Particle maximum energy (Emax) is obtained by equating
their cooling time (taking into account synchrotron and IC losses) to their acceleration
time, plus the constraint derived from comparing the accelerator/emitter size (R) and the
particle gyroradius: R > rg = Emax/qB. To minimize the number of free parameters,
we assumed the characteristic acceleration time to be tacc = E/(ηBcq), where E, q
and c are the particle energy, charge and velocity, respectively; the parameter η is the
acceleration efficiency, which we assume to be constant. Note that η is limited to the
range (0, 1), with η = 1 being the maximum efficiency, which corresponds to assuming
Bohm diffusion in the acceleration process.

The relativistic electrons interact with the ambient stellar photon field and with
the emitter magnetic field, producing a broad radiation spectrum. The dominant ra-
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diative processes are IC scattering and synchrotron, whereas the dominant VHE γ-ray
absorption process is pair production with stellar photons (Gould & Schreder 1967).
We have not considered radiation reprocessing, although for weak enough magnetic
fields an electromagnetic IC cascade can develop, increasing the transparency to VHE
photons, and for stronger fields, the secondary pair radiation can overcome the X-rays
from the primary electron distribution in the emitter (e.g. Bosch-Ramon et al. 2008).
We have also assumed that the emitting flow is at most mildly relativistic, as it would be
the case for a standing shock in a jet or a wind-colliding region, and thus we have not
accounted for Doppler boosting, which would increase the model geometrical param-
eters. Finally, we assumed a distance to the source of d = 3 kpc, and a characteristic
scale of a = 3 × 1012 cm related to the size of the binary system; for the companion
star, we adopted a luminosity of L∗ = 3 × 1038 erg/s and an effective temperature of
T∗ = 3 × 104 K; for the accelerator, we assumed an injection luminosity of Linj = 1036

erg/s (for comparative purposes, the estimated values of these parameters for the system
LS 5039 are d = 2.9 kpc, T∗ = 3.9 × 104 K, L∗ = 7 × 1038 erg/s, a = 2.3 × 1012

cm, and Linj < 1037 erg/s, while for the system PSR B1259-63 they are d = 2.3 kpc,
T∗ = 3.4 × 104 K, L∗ = 3.7 × 1038 erg/s, a = 1.2 × 1014 cm, Linj < 8 × 1035 erg/s). As
a result, only two free parameters are left in our model: the acceleration efficiency η,
and the ratio of the magnetic field energy density to the radiation field energy density,
δ = umag/urad. Once these parameters are given certain values, the steady-state electron
energy distribution can be computed (see e.g. Khangulyan et al. 2007).

3. Results
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Figure 1. SEDs for a weak magnetic field (δ = 10−4) and a high acceleration
efficiency (η = 1). The left figure was calculated for an emitter behind the
star, located at (−2a, a), while the right one was calculated for an emitter
in front of the star, located at (2a, a). In both cases the observer is in the
direction of the positive x-axis and the massive star is at (0, 0).

The spectral energy distribution (SED) is a measure of the amount of energy
emitted per time and area units in a certain frequency (or energy). Because the radiative
and absorption processes have a strong dependence with the interaction angle, the star-
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emitter-observer geometry plays a crucial role in the resulting HE and VHE spectrum.
In order to investigate this factor we calculated the SED for different positions of the
emitter with respect to the massive star and the observer. In Fig. 1 we present the
SEDs for two different positions of the emitter in a case dominated by the radiation
field (δ = 10−4) and a highly efficient accelerator (η = 1). The HE radiation produced
by IC scattering in the observer direction is greater if the emitter is behind the massive
star; however, the γ-ray absorption is also enhanced in this configuration, resulting in a
diminished VHE flux.

To study the geometrical aspects in which we are interested, and considering that
the emitter structure and location within the system is not known, it is useful to display
in maps relevant features of the emitter for all the possible locations. To do so, we
compute the particle population and the (absorbed) emission from an emitter placed at
a specific position in the star-emitter-observer plane, and then we extract any relevant
quantity for such a location. This procedure is repeated for every spatial coordinate
in the star-emitter-observer plane, and the result is displayed in the form of a two-
dimensional map. These maps are studied in the context of physical constraints (related
to energy requirements and confinement of the emitter), empirical constraints (scenarios
that yield a very intense emission are considered unlikely as there are very few known
systems with such characteristics) and instrumental constraints (energy fluxes below the
sensitivity of the present instruments cannot be detected).

We focus here on the total energy flux in the ranges: 0.3–10 keV (FX), 0.1–10 GeV
(FGeV) and 0.1–10 TeV (FTeV). Furthermore, to probe the validity of the point-like emitter
assumption, we estimate the minimum emitter radius considering balance between the
ram pressure of the stellar wind and the non-thermal electron pressure, which gives a
lower limit for the emitter pressure. We normalize this value to the stellar distance (r),
and consider the approximation to remain valid as long as R/r < 0.5. For illustrative
purposes, emissivity maps for a specific case are shown in Fig. 2.

4. Discussion

We explored in detail the radiation coming from systems of orbital separation a >
3 × 1012 cm with a one-zone leptonic model. This model works well for sources with
Linj < 1036 erg/s, and it reflects the relevant features of the emission and absorption
processes, mainly the geometry role in the detectability of γ-rays. However, the validity
of the approximation is dubious for sources with a high acceleration efficiency, a low
magnetic field, and an emitter located at r > 6a, as in those regions the value of R/r is
highest, with R/r ∼ 0.5 in such cases.

Some conclusions of our results are:

• In general, sources with low magnetic fields have a higher TeV luminosity, unless
the sources host very inefficient accelerators that can hardly reach TeV energies.

• Sources with strong magnetic fields have a higher X-ray luminosity, and in most
cases the predicted X-ray luminosity is far above the instrumental sensitivity
threshold, which suggests that such sources could be detected even at distances
larger than 3 kpc.

• There must be very few powerful sources with a high acceleration efficiency and
a weak magnetic field at a distance ∼ 3 kpc, as otherwise it would overpredict the
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Figure 2. Emission maps in the X-ray, GeV, and TeV bands (top left, top
right, and bottom left panels, respectively) for a weak magnetic field (δ =
10−4) and a high acceleration efficiency (η = 1). In all cases the observer
is in the direction of the positive x-axis and the massive star is at (0, 0).
For a source to be detectable with the current instruments, a lower limit can
be set to the energy fluxes: FX > 10−14 erg/s/cm2 (Chandra, XMM-Newton),
FGeV > 10−11 erg/s/cm2 (Fermi) and FTeV > 10−13 erg/s/cm2 (MAGIC, HESS,
VERITAS). Moreover, in view of the empirical constraints, an upper limit can
also be set to the energy fluxes: FX < 10−10 erg/s/cm2, FGeV < 10−9 erg/s/cm2

and FTeV < 10−11 erg/s/cm2.
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amount of observed strong γ-ray emitters. More specifically:
(

Linj

1036
erg
s

) (
d

3 kpc

)−2
< 0.1 − 1 .

However, there could be more sources with such characteristics if they are weaker
and/or at a farther distance (so rather sparse), and they would be observable in the
GeV and TeV range in the most favourable orbital phases.

• There could be a considerable number of sources that are currently below the
sensitivity of the detectors, as galactic sources with intense magnetic fields are
weak γ-ray emitters, and so they would be hard to detect in gamma rays at a
distance > 3 kpc.

Adiabatic losses are probably important in the farther regions of the system, so we
might have overestimated the emission, specially in the X-ray band. In future works we
will explore how the introduction of adiabatic losses affects these results, as well as other
effects like the radiation from the secondary pairs and the introduction of a hadronic
component. We will also use the emissivity maps as a tool for studying properties such
as the γ-ray luminosity function of high-mass binaries, their lifespan, etc.
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Abstract. The distortion of the spacetime structure in the surroundings of
black holes affects the trajectories of light rays. As a consequence, black holes
can act as gravitational lenses. Observations of type Ia supernovas, show that our
Universe is in accelerated expansion. The usual explanation is that the Universe
is filled with a negative pressure fluid called dark energy, which accounts for
70% of its total density, which can be modeled by a self-interacting scalar
field with a potential. We consider a class of spherically symmetric regular
phantom black holes as gravitational lenses. We study large deflection angles,
using the strong deflection limit, corresponding to an asymptotic logarithmic
approximation. In this case, photons passing close to the photon sphere of the
black hole experiment several loops around it before they emerge towards the
observer, giving place to two infinite sets of relativistic images. Within this
limit, we find analytical expressions for the positions and the magnifications
of these images. We discuss the results obtained and make a comparison with
the Schwarzschild and Brans-Dicke solutions for the case of the galactic center
supermassive black hole.

1. Introduction

The study of gravitational lensing by black holes has received a boost (Virbhadra et al.
2000) due to the evidence of the presence of supermassive black holes at the center of
galaxies, including ours. For these objects, two sets of relativistic images are formed
when the light rays pass close to the photon sphere, for which the strong deflection limit
is adopted. This approximation was found for any spherically symmetric object with
a photon sphere (Bozza 2002). Many works considering strong deflection lenses are
found in the literature for different types of black holes. It is thought that observations
of the optical effects associated with these objects will be possible in the near future
(Eiroa 2013).

The accelerated expansion of the Universe can be explained by the existence of dark
energy as the prevailing component (see, for example, Bamba et al. 2012). This can be
in the form of phantom energy if ω < −1 in the equation of state p = ωρ, and can be
modeled by a self-interacting scalar field with a potential. Withing this context, regular
black hole and wormhole phantom solutions were found (Bronnikov et al. 2006); also
phantom dilaton black holes were recently studied as gravitational lenses (Gyulchev et
al. 2013; Eiroa et al. 2013).
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Figure 1. Horizon radius xh = rh/m as a function of b̃ = b/m.

2. Regular phantom black hole

We consider the following spherically symmetric geometry, which is a solution of the
Einstein equations with a scalar field possessing a negative kinetic term and a potential
(Bronnikov et al. 2006):

ds2 = −A(r)dt2 + B(r)dr2 + C (r)dΩ2, (1)

where

A(r) = B(r)−1 = 1 +
3mr

b2 + (r2 + b2)

[
c

b2 +
3m

b3 tan−1
( r

b

)]
,

C (r) = r2 + b2, (2)

with c, m, and b > 0 constants. The solution is regular everywhere, i.e. free from
curvature singularities; b is the scale of the scalar field, and m can be interpreted as
the mass. In the particular case that c = −3mπ/2b, the metric becomes asymptotically
flat. We have a black hole solution for m > 0, with a Killing horizon rh. In this
case, the region corresponding r > rh is asymptotically flat, and the one with r < rh
is asymptotically de Sitter. This solution is stable for b = 3mπ/2, for which rh = 0
(Bronnikov et al. 2012). It is convenient to adimensionalyze the metric with the mass,
by defining

x = r/m, T = t/m, b̃ = b/m, (3)

and adopting the flatness condition, so the black hole solution has the form

ds2 = −A(x)dT2 + B(x)dx2 + C (x)(dθ2 + sin2 θdφ2), (4)

A(x) = B(x)−1 = 1 +
3x

b̃2
+

3
b̃

(
1 +

x2

b̃2

) [
−π

2
+ tan−1

(
x

b̃

)]
, (5)

C (x) = x2 + b̃2. (6)
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Figure 2. Deflection angle α as a function of the closest approach distance
x0 for b̃ = 1 (full line), b̃ = 3 (dashed line), and b̃ = 6 (dashed-dotted line).

The adimensionalyzed radius of the horizon xh, corresponding to the root of A(x), is a
decreasing function of b̃, shown in Fig. 1. The radius of the photon sphere xps is given
by the largest positive solution of the equation

A′(x)C (x) = C ′(x)A(x), (7)

where the prime represents the derivative with respect to x. For the phantom black hole,
corresponds to the constant value xps = 3.

3. Strong deflection limit

The deflection angle for a photon coming from infinity, as a function of the closest
approach distance x0, is given by (Virbhadra et al. 1998)

α(x0) = I (x0) − π, (8)

where
I (x0) =

∫ ∞

x0

2
√

B(x)dx
√

C (x)
√

C (x)
C (x0)

A(x0)
A(x) − 1

. (9)

The deflection angle is a monotonic decreasing function of x0, as can be seen in Fig. 2.
It diverges when x0 approaches to the radius of the photon sphere xps = 3, and goes
to zero for large x0. When x0 is close enough to xps , the deflection angle is greater
than 2π, which means that the photons perform one or more turns around the black hole
before emerging towards the observer. This results in two infinite sets of relativistic
images, one on each side or the black hole (i.e. at the same side and at the opposite
side of the source). To study the situation where the photons pass close to the photon
sphere, we adopt the so-called strong deflection limit (Bozza 2002). The integral (9)
can be split into two parts

I (x0) = ID (x0) + IR (x0), (10)
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Figure 3. Strong deflection limit coefficient c2 as a function of b̃.

where ID yields the leading order term in the divergence of the deflection angle, which
is logarithmic; IR is regular for all values of x0 and can be easily evaluated. It can be
shown that in this limit, the deflection angle can be approximated by the simple general
form (Bozza 2002)

α(u) = −c1 ln
(

u
ups
− 1

)
+ c2 +O(u − ups ), (11)

with u = [C (x0)A−1(x0)]1/2 the impact parameter, and ups = u(xps ). The quantities
c1 and c2 are the strong deflection limit coefficients, which depend only on the metric
functions. Performing the calculations for the regular phantom black hole, we have that
c1 = 1 is a constant, and c2 results (Eiroa et al. 2013)

c2 = −π + cR + ln
b̃3

[
−6b̃ + 9π + b̃2π − 2(9 + b̃2) tan−1

(
3
b̃

)]2

(9 + b̃2)2
[
2b̃ − 3π + 6 tan−1

(
3
b̃

) ]3 , (12)

where cR = IR (xps ) is obtained numerically for each value of the parameter b̃. The
coefficient c2 is a decreasing function of b̃, as shown in Fig. 3.

Adopting a configuration where the black hole (l) is situated between the source
(s) and the observer (o), both located in the (asymptotically) flat region, at distances
x ≫ xh , the lens equation is given by (Bozza 2008)

tan β =
dol sin θ − dls sin(α − θ)

dos cos(α − θ) , (13)

where dos , dol and dls, are the observer-source, observer-lens, and lens-source angular
diameter distances, respectively; β is the angular position of the source, and θ is the
angular position of the image. For highly aligned objects, i.e. β and θ small, the lensing
effects are more significant, and the deflection angle, for each set of relativistic images,
is close to an even multiple of π:

α = ±2nπ ± ∆αn, (14)
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where n ∈ N, and 0 < ∆αn ≪ 1. Then, the lens equation takes the simplified form

β = θ ∓ dls

dos
∆αn. (15)

From the lens geometry, we have that u = dol sin θ ≈ dolθ. Replacing this relation
in Eq. (11), and using the lens equation (15), it is not difficult to see that the angular
position of the n-th relativistic image results (Bozza 2002)

θn = ±θ0n +
ξndos

dls
(β ∓ θ0n), (16)

where
θ0n =

ups

dol

[
1 + e(c2−2nπ))/c1

]
, (17)

and
ξn =

ups

c1dol
e(c2−2nπ)/c1 . (18)

The magnification of the n-th image µn is given by the quotient between the angle
subtented by the image and the source:

µn =
�����
β

θn

dβ
dθn

�����
−1
. (19)

Replacing Eq. (16) in expression (19), within the approximations adopted above, the
magnification of each relativistic image takes the form

µn =
1
β

θ0nξndos

dls
. (20)

The magnifications decrease exponentially with n, so the first relativistic image is the
brighest one, as can be seen by replacing expressions (17) and (18) in (20). These
magnitudes can be related with observations by defining the observables:

s = θ1 − θ∞ (21)

and
r =

µ1∑∞
n=2 µn

. (22)

The angular position θ∞ is the limiting value where the images approach as n → ∞,
which is an increasing function of b̃ for a given value of dol . The first relativistic image
is expected to be resolved from the others since it is the outermost and brightest one.
Then, the observable s is defined as the angular separation between the first relativistic
image and the others, which are packed together at the limiting value θ∞. The observable
r is the quotient between the flux of the first relativistic image and the flux coming from
all the others. In the strong deflection limit, and for high alignment, we obtain that

s = θ∞e(c2−2π)/c1 = θ∞ec2−2π (23)

and
r = e2π/c1 = e2π, (24)

which are functions of c1 and c2. For the phantom black hole, c1 = 1, so r is a constant.
The quotient s/θ∞ is plotted as a function of b̃ in Fig. 4.
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Figure 4. Observable s/θ∞ as a function of b̃.

4. Summary and discussion

In this work, uncharged regular phantom black holes, obtained from a scalar field pos-
sessing a negative kinetic term and a potential, were studied as gravitational lenses.
The strong deflection limit coefficients c1 and c2 were calculated, which allowed us to
obtain analytical expressions for the positions and the magnifications of the relativistic
images, and the observables θ∞, r and s. The first relativistic image is the outer one,
which is also the brightest, and the others are packed together at the limiting value θ∞.
If the strong deflection limit coefficients can be obtained from observational data, the
phantom black holes studied here can be clearly distinguished from the Schwarzschild
and vacuum Brans-Dicke solutions, because the values of c2 are different (Bozza 2002;
Sarkar et al. 2006).
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Abstract. Starting from the canonical formalism for constrained Hamiltonian
systems, we develop a second order approach to tackle the issue of the number
of degrees of freedom in teleparallel theories of gravity.

1. Introduction to teleparallel gravity

The teleparallel equivalent of general relativity (TEGR) is an alternative geometrical
reformulation of general relativity. This theory was originally developed by Einstein
in an attempt of unifying gravity and electromagnetism (Einstein 1930, 1939). In this
formulation, the field of tetrads is taken as the dynamical variable instead of the metric
tensor. The tetrad is a basis ea (x), a = 0, 1, 2, 3, of vectors in the spacetime. Each
vector ea can be decomposed in a coordinate basis with components eµa, such that the
orthonormality condition reads ηab = gµνeµaeν

b
, where ηab = diag (1,−1,−1,−1) is

the Minkowski metric. This relation allows to obtain the metric starting from the tetrad,
with the aid of the co-basis ea (x), since gµν = ηabeaµebν (matrices eν

b
and eaµ are inverse

each other). Thus, the determinant of the metric is written as √−g = det[eaµ] = e.
An important feature of the TEGR Lagrangian is that it does not contain second

derivatives of the tetrad, because it is quadratic in the tensor

Tµ
νρ = eµa (∂νeaρ − ∂ρeaν), (1)

which resembles the electromagnetic field tensor. This can be regarded as the torsion
of the Weitzenböck connection Γµρν = eµa∂νeaρ = −eaρ∂νeµa, which differs from Levi-
Civita connection in the contorsion tensor Kµ

ρν =
1
2 (T µν

ρ −Tµν
ρ +Tνµ

ρ) . Weitzenböck
connection has torsion but not curvature.

The TEGR action is written in terms of the torsion scalar T , which is defined as
T = S µν

ρ Tρ
µν, where the tensor S µν

ρ reads

S µν
ρ ≡ 1

2
(
Kµν

ρ + T λµ
λ δνρ − T λν

λ δ
µ
ρ

)
. (2)

The TEGR action is
STEGR =

1
2κ

∫
d4x e T . (3)
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The equivalence between general relativity and the TEGR is based on the fact that the
TEGR Lagrangian is equal to the Einstein-Hilbert Lagrangian up to a four-divergence
that is integrated out in the action: the relation between the (Levi-Civita) Ricci scalar
and the torsion scalar is

T = −R − 2∇ρ (T µρ
µ ). (4)

2. Modified teleparallel gravity

In the spirit of f (R) gravity, we can define f (T ) gravity, an appealing modified gravity
theory that deformates the teleparallel action by means of an arbitrary function f (Ferraro
et al. 2007, 2008). Its action is

ST [ea] =
1
2κ

∫
d4x e f (T ). (5)

Varying with respect to the tetrad, the field equations for this theory are

4
(
1
e
∂µ (e S µν

a ) + eλa Tρ
µλS µν

ρ

)
f ′(T ) + (6)

4S µν
a ∂µ (T ) f ′′(T ) − eνa f (T ) = −2κ eλa Tν

λ,

where Tν
λ is the energy-momentum tensor. Unlike f (R) theories, the dynamical equa-

tions in f (T ) theories are always second order, since the Lagrangian does not contain
second derivatives of the tetrad field. A distinctive feature of these equations is the
loss of local Lorentz invariance: if ea (x) is a solution then the transformed tetrad
eb
′
= Λb′

a (x) ea is not, in general, a solution of the field equations. In fact the diver-
gence in equation (4) is not invariant under local Lorentz transformations. This fact is
harmless when f (T ) = T , since the divergence is integrated out in the action, but it
is crucial in a non-trivial f (T ) theory because the divergence remains encapsulated in
the argument of f . This feature means that the theory possesses degrees of freedom
that do not lie in the metric tensor, since gµν is unable to distinguish among locally
Lorentz-related tetrads. The nature of the extra degrees of freedom is an open issue.

3. Hamiltonian formalism

In general relativity and gauge theories there are constraints among the canonical mo-
menta. Therefore, the initial values of the canonical momenta cannot be freely chosen,
but they have to accomplish the constraint relations. Moreover, the evolution of the
system has to preserve the constraints; this consistency requirement can lead to more
constraints. At the end of the day, one gets a set of f first class (on-shell commuting)
constraints and s second class (forming canonical pairs) constraints (see, for instance,
Sundermeyer 1982). For a system of n pairs of canonical variables (q, p) the number
of physical degrees of freedom #d.o. f is

#d.o. f . = n − f − s
2
. (7)

The knowledge of the algebra of constraints is fundamental for the quantization of the
theory, so being a strong motivation for considering the Hamiltonian formalism of this
kind of theories. For the moment, we are interested in getting the number of physical
degrees of freedom of TEGR and f (T ) theories.
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3.1. Teleparallel gravity
We will recall the approach of Maluf et al. (2001) for the Hamiltonian formalism of
the TEGR (see also Maluf et al. 2011, Maluf 2013). This is done through a first
order formulation of the Lagrangian density, in an analogous way to the first order
formulation of electromagnetism, in which Aµ and Fµν are considered independent
fields (for different approaches see Blagojevic et al. 2000 and Okolów 2013).

The first order formulation of the TEGR is written in terms of the torsion tensor
Tabc = eλa eµ

b
eνc Tλµν , and also an auxiliary field quantity φabc = −φacb . Then the

Lagrangian will be
L(e, φ) = k e Λabc (φabc − Tabc ), (8)

where Λabc is defined by

Λabc =
1
4

(φabc + φbac − φcab ) +
1
2

(ηacφb − ηabφc ), (9)

and φb = φaab. Indices a, b, c are lowered and raised by means of ηab and ηab.
The variation of the Lagrangian with respect to φabc led to the result φabc = Tabc ,
while the variation with respect to the tetrad yields the standard equations of motion of
the TEGR. So the Lagrangian L(e, φ) is equivalent to the teleparallel gravity Lagrangian.

The momentum canonically conjugated to eak is Πak = −4k e Λa0k . Here the
relation between Πak and the velocity ėak is non trivially encoded in the torsion through
the tensor Λa0k . From this definition, four primary constraints Πa0 = 0 appears, due to
the antisymmetries of the Lagrangian.

After obtaining the primary Hamiltonian H0 = Π
ai ėai − L(e, φ), the momen-

tum Πak is decomposed into irreducible components, by writing the momenta into
symmetric and antisymmetric parts,

Πak = eai Π
(ik) + eai Π

[ik] + ea0 Π
0k . (10)

Through this procedure, the authors find more primary constraints based on the
fact that only the symmetrical components Π (ik) depends on the velocities. This leads
to the primary constraints Γab = −Γba = Π[ab] + 4k e (Σa0b − Σb0a ) = 0. Secondary
constraints Ca = 0 arise from the requirement that the primary constraints do not evolve
in time. These are given by Ca = ea0 H0 + eai Hi, where Hi = −eai ∂kΠak −Πak Taki.

With all of this, the full Hamiltonian density, including Lagrange multipliers, can
be written as

H (eaµ,Π
aµ, λab, λa) = ea0 Ca + λab Γ

ab + λa Π
a0. (11)

The complete set of constraints is separated in first and second class constraints through
the calculation of the Poisson brackets.

From this analysis, it is obtained that Ca, Γab and Πa0 are a set of first class
constraints. With this information we can count the physical degrees of freedom of
the TEGR theory: the dynamical field quantities (eai,Πai) display n = 12 pairs of
canonical variables. There are 4 + 6 = 10 first class constraints (Ca, Γab) that generate
symmetries of the action. Then,

#d.o. f .TEGR = 12 − 10 = 2, (12)
as it was expected, since the theory is equivalent to general relativity.
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3.2. Modified teleparallel gravity
Li et al. (2011) analyze the structure of constraints of f (T ) by rewriting the Lagrangian
density in an equivalent form

L = −e[φT − V (φ)]. (13)

In fact, by varying with respect to the scalar field φ one gets T = V ′(φ), which implies
that the Lagrangian contains the Legendre transformation of V (φ). Therefore the scalar
Lagrangian is just a function of T :

f (T ) = φT − V (φ). (14)

By anti-transforming one gets
φ = f ′(T ), (15)

which allows to fix the potential V to be used for each function f . This form of
the Lagrangian adds an extra primary constraint π = ∂L/∂(φ̇) ≡ 0. However, the
appearance of V (φ) in the Hamiltonian modifies the structure of the Poisson brackets,
which become hard to calculate. After some simplifications, the authors find eight
first class constraints and eight second class constraints. Since the configuration space
harbors 17 variables, they get

#d.o. f . f (T ) = 17 − 8 − 8
2
= 5. (16)

Therefore, f (T ) gravity would have 3 extra degrees of freedom compared with telepar-
allel gravity. The authors suggest that the extra degrees of freedom could imply a
massive vector field or a massless vector field plus a scalar field.

4. Another procedure for the Hamiltonian formalism

In order to develop a second order formalism for TEGR and modified teleparallelism,
we start with the torsion scalar T written in the following way:

T = 1
4

Tρ
µνT µν

ρ − 1
2

Tρ
µνTµν

ρ − Tρ
µρTρµ

ρ. (17)

All the terms are quadratic in the the product ∂[µeaν] ∂[ρebλ]. So we can reorganize them
to eventually get the Lagrangian in a proper form:

L = e T = e
1
2
∂[µeaν] ∂[ρebλ] eµc eνe eρ

d
eλf N ced f

ab
, (18)

where the object playing the role of a supermetric is

N ced f
ab

� 2 ηab ηd[cηe] f − 4 δ[ fa ηd][c δe]
b
. (19)

Then, the canonical momenta are given by

Πν
a �

δL
δėaν
= e ∂[ρebλ] e0

c eνe eρ
d

eλf N ced f
ab

. (20)
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In this result we recognize the constraints Π0
a = 0 (e0

ce0
e is symmetric but N ced f

ab
is

antisymmetric in c, e), that resemble the primary electromagnetic constraint. They were
expectable, due to the electromagnetic flavor of the TEGR Lagrangian. This means
the evolution of ea0 is not completely determined by the Lagrangian and the initial
conditions; as a consequence, g0ν involve some gauge freedom. This gauge freedom
also affects the tensor density det(gµν) gi j (i, j = 1, 2, ...)). This means that the gauge
freedom in ea0 is also contained in e eia . Instead, it is easy to prove that no trace of
ea0 is left in e e0

a; then, it is {Π0
a, e e0

a} = 0. The relation between the rest of canonical
momenta and velocities is

e eek Π
k
a = e eeν Π

ν
a = (ėbj − ∂jeb0) e j

f
C ef
ab
+ P e

a , (21)

where the following definitions hold

C ef
ab
� e2 e0

d e0
c N ced f

ab
, P e

a � e2 e0
c (∂je

b
k ) e j

d
ekf N ced f

ab
(22)

(it is C ef
ab

= C f e
ba

and {Π0
a , C ef

ab
} = 0). We will get more primary constraints

whenever the equation (21) cannot be solved for all the canonical velocities ėbj . Then
we have to focus on the rank of the tensor C ef

ab
. It is easy to verify that the supermetric

N ced f
ab

cancels out in D = 1 + 1 dimensions, so meaning that all the canonical
momenta are constrained to vanish and no physical degrees of freedom are left. In
higher dimensions we should examine how many null eigenvalues has the matrix C ef

ab
.

We can define the superindex A � (a, e) to write C ef
ab

as a symmetric D2 × D2 matrix
CAB and the equation (21) as the linear set

e (ΠA − PA) = CAB EB, (23)

where ΠA � ee
k
Πk

a, EB � (ėbj − ∂jeb0) e jf . Each eigenvector V A of CAB having a
vanishing eigenvalue leads to an additional primary constraint

G(V ) � (ΠA − PA) V A = 0. (24)

The algebra of primary constraints is not trivial. Although {Π0
a , CAB} = 0 means that

{Π0
a ,V

A} = 0, PA still contains traces of ea0 hidden in e j
d

eλf . Therefore

{Π0
a,Π

0
b} = 0, {Π0

a ,G(V ) } = −{Π0
a , PA}V A , 0. (25)

Neither {G(V ),G(W )} is trivial because there are traces of eaj in ΠA, PA and V A. Just
to exemplify, let us consider the case D = 3. It is easy to verify that one of the six
null eigenvectors of CAB is V A = (0, 1, 0, 1, 0, 0, 0, 0, 0), where A = (a, e) is given by
3(a−1)+e. Then, the PA’s enter the respective constraint G(V ) through the combination

PAV A = P1
0 + P0

1 = 2 e2 (∂1e2
2 − ∂2e2

1). (26)

The complete structure of the algebra of constraints will be analyzed in a forthcoming
work.
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5. Summary and perspectives

We reviewed the first order approach of Maluf et al. (2001) for counting physical degrees
of freedom in teleparallel gravity. Thus, one can show that TEGR contains the same
number of degrees of freedom than general relativity. Based on this procedure, Li et
al. (2011) concluded that f (T ) gravity has three degrees of freedom more than general
relativity. We have shown the treatment of the primary constraints in the framework of a
second order procedure, which could facilitate the identification of the physical degrees
of freedom when f (T ) gravity is tackled through the method depicted in Section 3.2.

Acknowledgments. The authors thank N. Deruelle for helpful discussions. This
work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET) and Universidad de Buenos Aires.
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Abstract. It is investigated if magnetic fields generated during reheating after
inflation posses magnetic helicity, HM . This quantity is a measure of the
number of twists and links of magnetic lines and is generated at the birth of the
fields. This topological property is of fundamental importance in determining
the evolution of the magnetic fields in the primordial plasma and the operation
of dynamos. The magnetic fields we consider are induced by stochastic electric
currents of scalar charges, cosmologically generated at the transition between
inflation and reheating. We compute the rms value of the fields and of HM

finding non-zero in both cases. The main result is that the fields generated by
the mentioned mechanism have maximal magnetic helicity.

1. Introduction

Magnetic fields are widespread in the Universe, independently of the redshift: From
our own Milky Way up to high redshift galaxies, magnetic fields regular over the
size of the structure are observed, with intensities BG ∼ µG. The observations just
mentioned challenge the accepted paradigm for magnetogenesis, namely a seed field
amplified by a dynamo operating since the creation of the structure, and point to a
possible cosmological, not in-situ, origin of the magnetic fields. Viable cosmological
magnetogenesis scenarios are based on the breaking of conformal invariance of the
magnetic field, i.e. the magnetic field must evolve in a way such that B (η) , B0/a2 (η),
where B0 is an initial value and a (η) is the scale factor of a flat Friedmann Robertson
Walker (FRW) universe and η the conformal time. Due to the lack of success in finding a
primordial magnetogenesis mechanism that explains both the intensity and the geometry
of the observed fields, research began toward magnetohydrodynamical processes that
could amplify the primordially generated seeds during the radiation dominated epoch
of the universe, prior to structure formation. During that period, decaying turbulence
might have been operative, it having been triggered by reheating and/or electroweak
and QCD phase transitions. The topology of the initial magnetic field plays a crucial
rôle in determining the evolution of the field in a turbulent scenario. It is described
by the magnetic helicity which is defined as HM =

∫
V

B̄ · Ā. In the absence of ohmic
dissipation it is a conserved quantity in MHD, and is interpreted as the number of
twists and links of the field lines. The distinctive feature of HM is that it performs an
inverse cascade, i.e. it evolves from small scales toward large scales, thus coherently
reorganizing the field on large scales.
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2. Magnetic helicity of stochastic magnetic fields

We consider the magnetogenesis mechanism developed in 1998 by Calzetta et al., based
on a charged scalar field minimally coupled to gravity in a FRW universe, described
by the Lagrangian L = √−g

[
gµνDµΦD†νΦ† + m2ΦΦ† + (1/4) FµνFµν

]
. When the

transition from inflation to reheating unfolds, the scale factor of the FRW universe
changes as aI (t) ∝ exp (Ht) → aR (t) ∝ t2/3 and as a consequence the scalar field
vacuum state turns into particle state, i.e. φI (κ, η) = ακφR (κ, η)+ βκφ∗I (κ, η) where βκ
accounts for particle creation. As a consequence a stochastic electric current develops:
its mean value is zero but not its rms value, which is the source of a stochastic magnetic
field. For sub-horizon modes we have βp ∼ i/

(
16τ0p5

)
, p ≥ 1, while for super-

horizon modes βp ≃ −i
√

9H/16mp−3/2 for p < m/H and βp ≃ −i (3/8) e−ipp−3 for
m/H < p < 1. We see that the contribution of sub-horizon modes is suppressed relative
to the super-horizon ones. However the former are responsible for a mildly turbulent
flow on scales of the order of the horizon size, with Reynolds numbers Re ≃ 100. As
the induced fields are random, all mean values are zero, and the rms values must be
estimated through the calculation of two-point correlation functions. For the magnetic
helicity, the detailed calculation of those function was done by Calzetta & Kandus in
2014, who expressed it as the sum of four Feynmann graphs shown in figures 1 and 2.
In them, full lines represent the charged scalar fields, dotted lines the vector potential
Ai while dashed lines the magnetic field Bi. The prefactor of the mean helicity graph
is null as expected. The dimensionless relevant parameters for numerical evaluation
are m/H ≃ 10−11 − 10−9, κG ≃ 10−51 − 1049 and σ0

H ≃ 10−7/2 − 10−3/2, where H is
the Hubble constant during inflation, m the mass of the scalar field, κG = kG/H the
dimensionless galactic scale and σ0 the electric conductivity at the onset of radiation
dominance.

2.1. Magnetic helicity and magnetic fields on galactic scales
The magnetic helicity on galactic scales due to mean and fluctuating fields on that scale
is

HM (κ) ≡ Ξ1/2 (κ) ∼
(

H
σ0

)2 ( m
H

)11/6 102
(
π4e

)2/3 κ
−1/2 (1)

with fractal dimension D = 1/2. The important quantity for dynamo action however, is
the field intensity due to fields that are regular on the considered scale. This is obtained
by filtering out the fluctuating fields, obtaining that the magnetic helicity reads

HM (κλ) ∼ e−2/3
( m

H

)4/3 (
H
σ0

)2
(2)

with fractal dimension D = 0. Comparing with the previous dimension, we see that
the variation of the number of magnetic links with the scale is due to fluctuating fields.
Smooth fields also have non-trivial topology, the associated number of defects is scale
invariant. The associated magnetic field can be estimated as

B (κG ) ∼ H1/2
M κ

2
G ∼ e−1/3

( m
H

)2/3 (
H
σ0

)
κ2G (3)
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and replacing the figures we obtain a present value of Bhel
G
∼ 10−61 G, which is too

small to seed the galactic dynamo, even the field having non-trivial topology.
The scale we considered to evaluate the fields in this section re-entered the particle

horizon by the end of radiation dominance, i.e. it was frozen-out during that period
and consequently no causal processes could affect it. One such process is the above
mentioned inverse cascade of magnetic helicity, and is the subject of the following
section.

2.2. Magnetic helicity at small scales: causal evolution inside particle horizon
In this section we consider the evolution of the fields generated inside the particle
horizon at the beginning of radiation dominance. Now the field evolves in a causally
connected domain and hence the kinematical effects of the conservation of helicity
can be taken into account. The hypotheses we make are that decaying turbulence is
operative during all radiation dominance and that the scale of the horizon has the same
value that at the end of inflation, which in dimensionless variables means κH ≃ 1.
We also assume that magnetic helicity is perfectly conserved, a fact that leads to a
comoving coherence scale growth of the form λ (η) ∝ λ0η

2/3, and a field decay law
B (η) ∝ B0η

−1/3, where η is the dimensionless conformal time and λ0 and B0 are
initial values for the comoving scale and field respectively. On a scale κ−1 ∼ 1 at the
beginning of radiation dominance magnetic helicity is HM ∼ π−4/3e−10/3(H/m)κ−2,
and considering the evolution described just above, we obtain a magnetic field interval

Beq ∼ 1
π2/3e5/3

(
H
m

)1/2 (
heq
hrh

)−1/6
∼ 10−9G − 10−5G (4)

with coherence length values

ℓeq ∼ H−1
(
heq/hrh

)1/3 ∼ 10−3pc − 10−1pc. (5)

According to the literature, the obtained range of magnetic field intensities is very high
and the coherence scales are of astrophysical importance.

Figure 1. Left: Mean Helicity graph (multiplicity 1). Right: Square graph
(Multiplicity 4).

3. Summary and perspectives

In this work we have studied if magnetic field induced by stochastic currents existing
during reheating have non-trivial topology. We found that this is indeed the case and
estimated the associated field intensities in two important scales. The first one was the
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Figure 2. Left: Two Bubbles graph (Multiplicity 2). Right: Cross graph
(Multiplicity 2).

galactic scale, where the contributing fields did not evolved causally. We found that
although the topology is non-trivial the field intensity is too weak to feed the galactic
dynamo. The second scale was the horizon scale at the end of reheating, where the
field could experienced inverse cascade of magnetic helicity. Assuming a very simple,
optimistic model for the evolution, we obtain very high intensities over astrophysical
interesting scales. These facts open the door to consider more realistic environments
and mechanisms in the early universe to address the evolution of primordial magnetic
fields.
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Abstract. The explanation of the origin of cosmic structure, provided by the
inflationary paradigm, is not completely satisfactory as all of the scenarios, based
on the conventional approach to the so-called “quantum-to-classical transition”,
lack the ability to point out the physical mechanism responsible for generating
the inhomogeneity and anisotropy of our Universe starting from and exactly
homogeneous and isotropic vacuum state associated with the early inflationary
regime. The “collapse proposal” considers the spontaneous collapse of the
wave function as a possible solution to that problem. In this letter, we present
the answers provided by the above proposal and explore their relevance to the
investigations concerning the characterization of the observational quantities and
other statistical aspects of the cosmic microwave background.

1. Introduction

One of the cornerstones of the Λ-Cold Dark Matter cosmological model is the infla-
tionary paradigm. The modern standard inflationary scenario states that all cosmic
structure was originated from quantum fluctuations of the vacuum state of the inflaton
field. The general setting is that the perturbations evolved in a Friedmann-Robertson-
Walker (FRW) background space-time with a nearly exponential expansion. Once the
physical wavelength associated with these fluctuations becomes larger than the Hubble
radius, they are identically associated with classical density perturbations. When the
Universe becomes matter dominated, primeval density inhomogeneities are amplified by
gravity and grow into the structure we see today. The photon density perturbations left
a particular imprint in the Cosmic Microwave Background (CMB), which is associated
with fluctuations in the photons temperature. The signature left by the photons in the
CMB is one of the most important predictions of the inflationary paradigm and indeed
is confirmed by recent observational data.

Nevertheless, when examining the above picture in more detail, one finds important
issues regarding the “quantum-to-classical” transition of the primordial perturbations.
In fact, the problem lies in the so-called quantum measurement problem. Quantum
decoherence has been a constant reference in the attempts to deal with this issue (Adler,
2003). In a nutshell, decoherence is the process by which a system that is not isolated,
but in interaction with an environment, “loses” coherence into the degrees of freedom of
such environment. It is a well studied effect that follows rather than supersedes the laws
of quantum physics. Its main achievement is to allow for the study of the conditions in
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which the quantum interferences expected from the idealized consideration of a system
as being isolated, become observationally suppressed as the result of the system’s
interaction with the environment. Nevertheless, as stated explicitly in (Joos, 1999),
decoherence does not solve the measurement problem, what decoherence tell us is that
certain objects appear classical when observed; clearly this raises a question: what is an
observation? and to answer it, at some stage we still have to apply the usual probability
rules of Quantum Theory.

On the other hand, there is a widespread view in the cosmological community
that decoherence addresses the quantum-to-classical issue1 when applied to the infla-
tionary Universe. In fact, there has been numerous works dedicated to implement the
decoherence program, and different variations of the same, to the early Universe, e.g.
decoherence as a result of quantum Brownian motion of the wave function of the inflaton
(Lombardo, 2005), decoherence without decoherence (Kiefer, 2009), etc. Nevertheless,
as we will argue next, decoherence does not solve the aforementioned problem in a full
and satisfactory manner. The precise formulation of the problem can be stated in the
following manner (Perez, 2006):

According to the inflationary paradigm, the accelerated inflationary scenario is de-
scribed by a homogeneous and isotropic space-time (i.e. by a spatially flat FRW metric)
characterizing the Universe, this is, the space-time does not contain any perturbations at
all. Moreover, the quantum fields are all characterized by their vacuum state |0〉, usually
such vacuum state corresponds to the so-called Bunch-Davies vacuum. In Appendix A
of Landau (2013) is shown that the Bunch-Davies vacuum is homogeneous and isotropic.
Additionally, the dynamics of the space-time are provided by Einstein’s equations, this
is, if the space-time is originally homogeneous and isotropic and Einstein’s equations
cannot break such symmetry, then the resulting space-time is still homogeneous and
isotropic. Moreover, as we have mentioned, the vacuum state characterizing the quan-
tum fields is also homogeneous and isotropic, but the dynamics of the quantum state is
governed by Schroedinger’s equation, which does not break translational and rotational
invariance; thus, the initial quantum state cannot be evolved into a final state lacking such
symmetries. Then the issue is: How did the primordial perturbations are born given
that the equations governing the dynamics are symmetry preserving? In other words, it
is not clear how out of an initial condition which is homogeneous and isotropic both in
the background space-time and in the quantum state that describes the “fluctuations,”
and based on a dynamics that supposedly preserves those symmetries, one ends up with
a non-homogeneous and non-isotropic state characterizing the late actual Universe.

Concerning decoherence and its implementation to solve the aforementioned prob-
lem, we can quote first a popular textook on the subject (Mukhanov, 2005): “How-
ever decoherence is not enough to explain the breakdown of translational invariance”.
Furhtermore, the application of decoherence to the early Universe faces the following
issues: (i) requires identification of certain degrees of freedom to be taken as an “envi-
ronment.” That would entail using our on limitations to measure things, as part of the
argument. (ii) decoherence relies on the diagonalization, after a suitable time-average,

1As a matter of fact, we find a bit misleading the term “quantum-to-classical transition.” Most people would
agree that there are no classical or quantum regimes. The fundamental description ought to be always
a quantum description. However, there exist regimes in which certain quantities can be described to a
sufficient accuracy by their classical counterparts represented by the corresponding expectation values. All
this depends, of course, on the physical state, the underlying dynamics, the quantity of interest, and the
context in which we might want to use it.
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of the density matrix. However, decoherence does not tell us that the situation is now
described by one element of the diagonal density matrix, but by all, and as such the
situation is still symmetric.

In a recent series of works (Perez, 2006; Sudarsky, 2011), the said problem has
been analyzed in detail; the solution, according to those works, is to invoke a collapse of
the wave function, i.e. a spontaneous change from the original quantum state associated
to the inflaton field into a new quantum state lacking the symmetries of the initial state.
This collapse acts on each mode characterizing the quantum state of the inflaton field.
The inhomogeneities of the field (described by the post-collapse state) are related to the
(classical) perturbations in the metric by the Einstein’s semiclassical equations. The
result of the evolution of such perturbations is related to the actual anisotropies and
inhomogeneities observed in the CMB. It is evident that the mechanism (that breaks
the symmetries) should be a physical process independent of external entities (i.e.
“observers,” “measurement devices” or “an environment”) as by definition the Universe
contains everything.

In the following we will focus on the manner in which the consideration of statistical
aspects of the CMB should be modified when taking into account the modifications
needed to explain the emergence of inhomogeneities and anisotropies in terms of theories
incorporating something like the spontaneous collapse of the wave function.

2. Issues regarding the statistical aspects of the standard inflationary paradigm

Here, we will present a brief summary of what we consider to be the main issues
regarding the statistical aspects that afflicts the traditional inflationary scenario. The
detailed discussion can be consulted in Ref. (Landau, 2013).

Let us start by reminding the reader that in the standard approach, the study of the
statistical nature of the problem is based on the study of the statistical n-point functions
of the Newtonian potential (which is equivalent to the curvature perturbation in the
longitudinal gauge) Ψ(x1) . . .Ψ(xn), with the overline denoting the average over an
ensemble of Universes. However, we have no access to such ensamble, therefore one
has the challenge to relate such ensemble average with the quantities that we actually
measure; furthermore, one needs to consider how these quantities are connected with
the quantum n-point functions. The traditional approach relies on the identification

Ψ(x1) . . .Ψ(xn) = 〈Ψ̂(x1) . . . Ψ̂(xn)〉, (1)

with 〈Ψ̂(x1) . . . Ψ̂(xn)〉 the standard quantum mechanical n-point function for the quan-
tum field operators.

We remark that the left hand side of Eq. (1) is associated with an ensemble of
Universes, all of which, even if real, are unaccessible to us. The usual line of argu-
ment continues by invoking ergodic arguments, to make a further connection between
ensemble averages and time averages, with other vague arguments indicating one might
replace the latter with spatial averages and often turning, in practice, to orientation
averages.

There are three major issues that arise here:

(i) How do we go from the arguments supporting ergodicity in time averages to
the corresponding arguments for spatial averages? In fact, regarding this point
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we note that there are intrinsic problems in considering ergodicity of processes
within a two-sphere.

(ii) Regarding the CMB, we, in fact, do not have access to the spatial sections
that would allow us to investigate the space averages. We only have access
to the particular intersection of our past light come with the 3D hypersurface of
decoupling. That is, to a two-sphere that we see as the source of the CMB photons
that reach us today: the surface of last scattering. How do we go from spatial
averages to averages over that two-sphere?

(iii) The identification of the classical ensemble average with the quantum correla-
tion functions should be justified more accurately. In particular, if we take the
identification as presented in Eq. (1) a problem arises in the case of the 1-point
function: The physical observable corresponds to the temperature anisotropies
in the CMB, which we denote by Θ(ϕ, θ), and that can be expanded in spherical
harmonics as Θ(ϕ, θ) =

∑
lm almYlm(ϕ, θ). A well-known result is that for large

scales, the temperature anisotropies are directly related to the Newtonian potential
Θ ≃ Ψ (known as the Sachs-Wolfe effect). Therefore, the coefficients alm can
be expressed as: alm =

∫
dΩYlm(ϕ, θ)Ψ(ϕ, θ); consequently, if one follows the

standard prescription given by Eq. (1), then Ψ = 〈0|Ψ̂ |0〉 = 0, thus, alm = 0.
Advocates of the standard approach would indicate that 〈alm〉 = 0 is not to be
taken as “the prediction of the model” regarding our Universe and that this would
only hold for an ensemble of Universes. The issue, of course, is what precise
interpretative posture regarding the theory can be used to justify this, while at the
same time justifying the positions taken vis-à-vis the other quantities that emerge
from the theory (such as the higher n-point functions).

3. Inflation and the collapse of the wave function

We will introduce a new ingredient to the inflationary paradigm: the self-induced col-
lapse hypothesis: a phenomenological model incorporating the description of the effects
of a dynamical collapse of the wave function of the inflaton on the subsequent cosmo-
logical evolution. The induced collapse operates in close analogy with a “measurement”
in the quantum-mechanical sense, but evidently without any observer or external appa-
ratus that could be considered to perform a measurement. That is, one assumes that at
a certain time ηc

~k
, the state of the field, which was initially the vacuum state, changes

spontaneously into another state that could in principle be a non-symmetrical state.
This proposal is inspired by the ideas of Penrose and Diósi, i.e. that gravity could be
responsible for the collapse of the wave function.

We start with the action of a scalar field minimally coupled to gravity. We next
separate the field into an homogeneous and isotropic background plus small fluctua-
tions: φ(~x, η) = φ0(η) + δφ(x, η). The field perturbations induce perturbations in the
background (K = 0 Robertson-Walker) metric: ds2 = a(η)2[−(1 + 2Ψ)dη2 + (1 −
2Ψ)δi jdxidx j ]. Our quantum field is ŷ = aδ̂φ; and the canonical conjugate momentum
is π̂y = aδ̂φ

′
= ŷ′ − ŷa′/a (The prime denotes derivative with respect to η).

Expanding the metric perturbation in Fourier modes, Ψ~k , and using Einstein semi-
classical equations, Gab = 8πG〈T̂ab〉, we obtain
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Ψ~k (η) = −
√
ǫ

2
H

MPk2

[(
cos(kη − kηc

~k
) +

sin(kη − kηc
~k
)

kηc
~k

)
〈π̂~k (ηc

~k
)〉

− k sin(kη − kηc
~k
)〈ŷ~k (ηc

~k
)〉
]
, (2)

with H the Hubble factor, which during inflation is nearly constant, ǫ is the slow-roll
parameter, and MP the reduced Planck’s mass. One can check that, before the collapse,
the quantum state corresponds to |0〉, therefore, 〈π̂~k (ηc

~k
)〉 = 〈ŷ~k (ηc

~k
)〉 = 0, thus Ψk = 0

and the space-time is completely homogeneous and isotropic. It is only after the collapse
that generically 〈π̂~k (ηc

~k
)〉 , 0, 〈ŷ~k (ηc

~k
)〉 , 0 and, consequently, Ψk , 0.

The collapse proposal is based on the hypothesis that each mode would jump to
a new state where the expectation value would be determined by both, the scale of
the uncertainties and some random variable. That is, 〈ŷR,I

~k
(ηc

k
)〉Θ = xR,I

~k,y

√
(∆ŷR,I

~k
)2
0 ,

〈π̂R,I
~k

(ηc
k
)〉Θ = xR,I

~k,π

√
(∆π̂R,I

~k
)2
0 , where R, I denotes the real and imaginary parts of the

field, respectively; ηc
k

is the conformal time of collapse; (∆ŷR,I
~k

)2
0 , (∆π̂R,I

~k
)2
0 are the

uncertainties of each mode of the field momentum operators in the vacuum state; and
xR,I
~k,y

, xR,I
~k,π

are random variables with a Gaussian distribution centered at zero with spread
one.

Given the previous prescription, it is clear that, the Newtonian potential Ψ, after the
collapse, is characterized in in terms of the random variables that determine the post-
colapse state. One of the advantages of our approach is that the nature of the randomness,
which one usually attributes to quantum theory, becomes transparent and specific: the
variables xR,I

~k,y
, xR,I

~k,π
characterize, once and for all, every kind of stochasticity involved.

As mentioned previously, the curvature perturbation Ψ is closely related with the
observational quantities, i.e. the temperature anisotropies. Therefore, the value of
all the {xR,I

~k,y
, xR,I

~k,π
} corresponding to our Universe, fixes the value of the observed

temperature anisotropies. Naturally, we cannot give a definite prediction for those
values, however, as will be argued next, the fact that a large number of modes ~k
contribute to the observed temperatures anisotropies, justifies a statistical analysis that
leads to a theoretical estimate for the observational quantities.

4. Connection to observations

In the collapse proposal, the coefficients alm are related to the random variables directly
as

alm ≃ H√
ǫMP

∫
d3k

k3/2 jl (k RD)T (k)Y⋆
lm(k̂)

[(
cos zk − sin zk

zk

)
(xR

~k,π
+ ixI

~k,π
)

+ sin zk
(
1 +

1
z2
k

)1/2
(xR

~k,y
+ ixI

~k,y
)
]
, (3)
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with RD the radius of the last scattering surface; T (k) the transfer function, which
represents the evolution of the curvature perturbation from the end of inflation to the
time of decoupling; jl is the spherical Bessel function of order l, and we have defined
zk ≡ kηc

~k
.

Equation (3) shows how the random numbers xR,I
~k,y

, xR,I
~k,π

, associated with the
collapse of the wave function, determine the coefficients alm. Let us remark that Eq.
(3) cannot be used to make a definite prediction as it involves the random numbers.
However, we can regard the integral appearing in Eq. (3), as a sum of complex numbers
representing a kind of two-dimensional random walk. As in any case for a random walk,
one might estimate the most likely value of the magnitude of the total displacement.
Thus, we focus primarily on the most likely value of |alm |2 (denoted by |alm |2ML). We
evaluate that quantity using a fiducial ensemble of realizations of the random walk and
take it approximately equal to the ensemble average value over of the total displacement,
i.e. |alm |ML ≃ |alm |. The overline appearing denotes average over the fiducial ensemble
of realizations. Explicitly our model predicts

|alm |2 =
∫

d3k

k3
H2

M2
Pǫ400π4

jl (k RD)2 |Ylm(k̂) |2T (k)C (zk), (4)

where
C (zk) =

(
1 +

1
z2
k

)
sin2 zk +

(
cos zk − sin zk

zk

)2
. (5)

The information regarding that a collapse has occurred is entirely contained in the
function C (zk). As we have noted in previous works, this quantity becomes a simple
constant if the collapse time happens to follow a particular pattern in which the time
of collapse of the mode ~k is given by ηc

k
= Z/k with Z as a constant. In fact, the

standard answer would correspond to C (k) = constant (which can be thought as an
equivalent “nearly scale-invariant power spectrum”). Thus, the result obtained for the
relation between the time of collapse and the mode’s frequency, i.e. ηc

~k
k= constant is

a rather strong conclusion that could represent relevant information about whatever the
mechanism of collapse is.

5. Conclusions

The treatment of the statistical aspects in the collapse proposal is quite different from the
standard inflationary paradigm: In the standard accounts, one is going from quantum
correlation functions to classical n-point functions averaged over an ensemble of Uni-
verses; then, one goes to n-point correlation functions averaged over different regions of
our own Universe, and, finally, one relates this last quantity with the observable |alm |2.
These series of steps are not at all direct and they involve a lot of subtle issues that
the standard picture does not provide in a transparent way. On the other hand, within
the collapse approach to the subject, the observable |alm |2 is related to the random
variables, xR,I

~k,y
, xR,I

~k,π
, which are associated to the quantum collapse. Therefore, in our

model, all stochasticity involved is naturally inherited by having introduced the collapse
hypothesis. This makes the treatment more transparent when dealing with the statistical
aspects of the problem.
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Abstract. The Sunyaev-Zeldovich (SZ) effect is one of the most important
secondary anisotropy of the Cosmic Microwave Background (CMB) Radia-
tion. The OLIMPO experiment, a mm-wave balloon-born telescope, is aimed to
measure this effect in a set of a carefully selected clusters. OLIMPO was devel-
oped to cover a wide range of frequencies and with a high angular resolution.
These features make it a promising instrument to measure CMB anisotropies
at high multipoles and the SZ effect caused by galaxy clusters. We performed
simulations of the OLIMPO spectroscopic and photometric measures of the
line-of-sight trough one of the galaxy clusters chosen to be observed by the
instrument. Using each kind of simulations individually and combined in order
to fit a theoretical curve, we find out that, as expected, spectroscopic simulations
have a superior performance, allowing the estimative of a larger set of cluster
parameters, and being more accurate in estimating some of them. Moreover,
a combination of spectroscopic and photometric simulations can even improve
some parameter estimates and reduce the bias inherent to them.

1. Introduction

The SZ effect is the most important secondary CMB anisotropy, dominant at l & 2000,
and is caused by the inverse Compton scattering by hot electrons inside galaxy clusters.
One out of 100 electrons that cross the core of a galaxy cluster is scattered, gaining energy
and thus distorting the CMB blackbody spectrum, with a decrement below ≈ 220 GHz
and an increment above that (Sunyaev & Zel’dovich 1969). Since the scattering depends
only upon the electron density and temperature, the thermal SZ effect is independent of
the cluster distance and can be used to study the mass distribution in high redshifts. The
kinetic SZ effect, about an order of magnitude weaker than the thermal component, is a
second order effect caused by the cluster drift across the line-of-sight (LOS). The total
distortion of the CMB signal can be expressed by (Birkinshaw 1999)

∆TSZ
TCMB

= f (x)y − τe
( vpec

c

)
, (1)

where the first therm is related to the thermal effect, with the comptonization parameter
given by y =

∫
(4kBTe/mec2)σT nedℓ, and the second therm corresponds to the kinetic

effect, related to the peculiar velocity vpec of the cluster.
The SZ distinctive spectral signature can be used to independently identify high-

redshift clusters, whose optical or X-ray observations are hard to detect. Combined
117
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with observations in other wavelengths, it can be used to study the baryon mass fraction
in clusters (indirectly estimating the Ωb parameter), to determine H0 (jointly to X-ray
measures), to estimate clusters peculiar velocities and, using the number counts of
clusters, to probe the growth of structures (and the energy density of the Universe).

A a large amount of SZ measurements have been performed in the last few years.
Some instruments, besides the Planck satellite (Planck Collaboration 2015), which
produced an all-sky catalogue of galaxy clusters detected via SZ effect, are, e.g., the
South Pole Telescope - SPT (Carlstrom et al. 2011), Sunyaev Zel’dovich Array - SZA
(Sharp et al. 2010), Atacama Cosmology Telescope - ACT (Hincks et al. 2010) and
OLIMPO (Masi et al. 2008, 2010).

2. The OLIMPO mission

OLIMPO is a mm-wave balloon-born experiment which is a combination of: a 2.6
m diameter Cassegrain telescope with pointing and scanning capabilities, four multi-
frequency arrays of advanced bolometers and a long duration 3He cryostat. The in-
strument is designed to perform a long duration (10-15 days) balloon flight along the
circumpolar region, departing from Svalbard islands in 2015. It will produce a set of
sensitive maps covering a wide range of frequencies and with high angular resolution
(Table 1). Details about the telescope can be found in Masi et al. (2005, 2008 and
2010).

Table 1. Characteristics of the OLIMPO instruments (Conversi et al. 2010).
Frequency (GHz) 143 217 353 450

Bandwidth (GHz FWHM) 40 61 98 126
FWHM (arcmin) 5.2 3.7 2.3 1.9

# of detectors 19 19 24 24
NEP (µK/H z1/2) 145 275 430 4300

Figure 1. Spectrum of SZ effect for different energy of the ionized intracluster
gas. The vertical bands refer to the frequency bands of OLIMPO experiment (Masi
et al. 2008).
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The high angular resolution and the wide range of frequencies make OLIMPO a
promising instrument to measure CMB anisotropies at high multipoles, study the far
infrared background due to unresolved galaxies at high redshift and measure the SZ
effect caused by galaxy clusters. The Figure 1 shows the spectrum of SZ effect and the
frequency bands covered by OLIMPO, optimally located in order to sample both, the
negative, the null and the positive SZ effects.

The OLIMPO observation strategy is to point to a given target, taken from a
carefully selected list of clusters, and explore the properties of the object with a good
signal-to-noise ratio (namely, to spend several hours on the same object). This is a
good approach for studying cluster properties and also a good follow-up for Planck
observations. With an angular resolution ranging from 1.9′ to 5.2′, it is possible to track
(in the better resolution) the cluster profile with steps just slightly larger than the typical
core radius: ∼ 2′.

3. Simulations

The SZ signal from galaxy clusters are contaminated by several astrophysical compo-
nents along the LOS. This leads to the need for multi-frequency measurements in order
to be possible to separate the contribution of each one, as well as to analyse its SZ
spectrum. However, each astrophysical signal theoretically depends of a set of parame-
ters, and consequently it is necessary a large number of parameter to describe the total
measured signal. For this reason, only photometric measures in few frequency bands
are not enough to estimate all these parameters, even knowing some of them quite well
and neglecting others.

Providing further information for this type of analysis, OLIMPO will also perform
spectroscopic measurements, besides the multi-band photometry, achieved through the
addition of a Differential Fourier Transform Spectrometer (DFTS) in front of the same
photometer (for details see Schillaci et al. 2014). As presented in de Bernardis et
al. (2012), the low resolution spectroscopic measurements of the SZ effect are quite
promising in estimating parameters describing clusters and signals along the LOS. For
this reason, the analyses presented here is aimed to evaluate the potential of OLIMPO
in estimating these parameters.

Since OLIMPO measurements will integrate the signal along the LOS, the sim-
ulations of the total signal have to include several components. The astrophysical
components chosen to integrate the simulations, and related parameters, are summa-
rized below, considering an observation of the LOS towards ABELL2219, a very bright
cluster.

Thermal SZ effect (∆It ): from Eq. 1, and neglecting relativistic corrections, the
thermal SZ can be described by: the electron temperature kTe and the optical depth
τt =
∫
LOS

neσT dl.
CMB anisotropies (∆ICMBi) and kinetic SZ effect (∆Iv): since the CMB ra-

diation and kinetic SZ effect have the same spectrum, we can describe them as:
∆ICMB = ∆ICMBi + ∆Iv . This way it is possible to consider only one parameter
to describe both signals, namely, ∆ICMB .

Non-thermal effect (∆Int ): a non-thermal population of electrons can also cause
the scattering of the CMB photons, allowing the production of SZ effect depending
of the quantity of electrons, which can be produced by, for example, Active Galactic
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Nuclei (AGN) and relativistic plasma in cluster cavity (Colafrancesco 2010, Birkinshaw
1999, de Bernardis et al. 2012). The parameters describing this effect are: the optical
depth of the non-thermal component τnt (∼ τt/50) and the minimum momentum p of
the electrons.

Dust emission (∆Id): this Galactic emission can be described by a modified
black body (MBB) model (Planck Collaboration 2014) written as Iν = ABν (T )νβD =
Bν (T )τD . A is the amplitude of the MBB, Bν (T ) is the Planck function for an equilibrium
temperature T , and βD is the dust spectral index. Then, this foreground component can
be characterized by the parameter τD , the dust optical depth.

Synchrotron and free-free Galactic emissions are not considered in our analysis,
since they are negligible with respect to dust in the frequency range OLIMPO operates.
We have also verified the contribution of CO rotational transition line emission in the
position of ABELL2219. Using the CO map released by Planck Collaboration in 2013,1
we confirmed the negligibility of this signal for OLIMPO on the cluster region. Finally,
we can write the total power on the detector, as function of the frequency ν, as (see de
Bernardis et al. 2012):

S(ν) = AΩE(ν)(1 − ǫm (ν))[∆It + ∆ICMB + ∆Int + ∆Id], (2)

where A is the collecting area (200 cm), Ω is the solid angle subtended by the detector
(Table 1), E(ν) is the efficiency of the detection system, and ǫm (ν) is the total emissivity
of the optical system and atmosphere.

The errors for photometric and spectroscopic measurements are estimated, respec-
tively, as

σphot =

[ ∫
BW

NEP2
f dν

2t

]1/2
, σspec = 0.61 c

√∫
BW

NEP2
f
dν

∆ν
√

t
, (3)

where t is the integration time, NEPf is the noise equivalent power (photon noise) pro-
duced by the instrument and atmosphere, with integration performed on the bandwidth
(BW), and ∆ν is the spectral resolution.

The spectroscopic and photometric simulations are repeated 1000 times, adding
errors estimated from a Gaussian distribution with zero mean and standard deviation
given by the Eqs. 3. We fit each simulated measurement using Eq. 2, and the best-fit is
obtained according to the minimum χ2. Figure 2 presents an example of both types of
simulations and the corresponding error bars. The integration time is 4 hours for each
type of measurements, and ∆ν = 6 GHz.

4. Results

4.1. Bandwidth analysis
Equations 3 show that wider bands, despite the larger number of measurements, increase
the error, compared to narrower bands. Therefore, to verify the best configuration in the
case of OLIMPO, we performed tests using two types of simulations as those described

1http://pla.esac.esa.int/pla/aio/planckProducts.html
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Figure 2. Simulated spectroscopic (4 hours, left) and photometric (4 hours, right)
measurements of the SZE towards ABELL2219 (see Table 2 for the input cluster pa-
rameters), with the respective vertical error bars (the horizontal bars correspond to
the BW FWHM). The continuous line (asterisk) is the best-fit line for the spectro-
scopic (photometric) measures. The dotted (diamond), dot-dashed (triangle), long
dashed (square) and dashed lines are the thermal SZ, dust, CMB + kinetic SZ and
non-thermal SZ anisotropies, respectively (Schillaci et al. 2014).

above, but using different BW configurations: Narrow bands (see values on Table 1),
and Wide bands (width of 50, 125, 35 and 30 GHz, for the bands of 143, 217, 353
and 450 GHz, respectively). For simplicity, this test is performed considering just two
signals: thermal SZ and Dust, fitting just two free parameters, τt and τD (see Table 2
for input values).

The best-fit of the simulated measurements provides the estimative of the free
parameters, obtaining smaller errors in the case of Narrow bands. It confirms Narrow
bands configuration to be better then the Wide bands.

4.2. Spectroscopy and photometry combination
In section 3 we discussed about the large number of independent parameters needed to
describe the cluster and foreground components along the LOS. This is the reason why
few-bands photometry is not enough to constrain all of them, or even to separate the
thermal SZ contribution from the others. However, a low-resolution spectroscopy of
SZ effect can provide a sufficient number of degrees of freedom (DOF) to fit several of
these parameters.

Aiming to investigate the performance of OLIMPO telescope as a spectrometer
(∆ν = 6 GHz) and as a photometer combined to a spectrometer in estimating these
parameters, we used a set of simulations as described in section 3. Results of estimating
5 and 6 free parameters are summarized in Table 2, where are also available the input
values. These results confirm the good performance of the simulated spectroscopic
measurements, and the improvement of the estimates when combining them with the
photometric measurements.

5. Concluding remarks

The work presented here demonstrates the potential of the OLIMPO measurements
on estimating parameters describing galaxy clusters and foreground components. The
analysis confirm that the instrument as a photometer alone cannot measure more than
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Table 2. Cluster and foreground parameters estimated from simulated observa-
tions of the SZE along a line of sight towards a cluster of galaxies. S refers to
spectroscopic observations (4 hours), S+P refers to spectroscopic observations for
4 hours, and photometric observations for 4 additional hours. The BW are those
presented on Table 1 (Schillaci et al. 2014).

5 parameters 6 parameters
Parameters input best-fit (S) best-fit (S+P) best-fit (S) best-fit (S+P)
100τT 1.70 1.76 ± 0.32 1.76 ± 0.29 1.78 ± 0.42 1.74 ± 0.29
kTe (keV) 9.5 9.5 ± 1.7 9.6 ± 1.7 9.6 ± 1.8 9.6 ± 1.6
106τD 1.85 1.85 ± 0.22 1.85 ± 0.17 1.94 ± 0.13 1.82 ± 0.23
104∆TCMB 3.1 3.04 ± 1.26 3.07 ± 0.11 3.07 ± 1.54 3.05 ± 0.11
104τnt 1.0 0.95 ± 2.13 1.00 ± 0.11 0.38 ± 6.07 0.88 ± 0.86
p 1.0 - - 5 ± 26 3.2 ± 6.1
χ2/DOF - 35.8/36 39.4/40 35.8/35 42.1/39

four parameters, while as a spectrometer it can measure five or six parameters, and even
improve these estimates combining photometric and spectroscopic measurements. Our
results indicate how promising is the low resolution spectroscopy of the SZ effect with
OLIMPO telescope.

Acknowledgments. C. P. Novaes acknowledges the CNPq [237059/2012-6] fellow-
ship, and Dr. Luca Lamagna for helpful discussions.
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Abstract. The new generation of gamma-ray telescopes has revealed a rich
sky at very high photon energies. The unveiling of the nature of these sources
and the understanding of the physical processes that give rise to the gamma-
ray emission are among the most important present challenges of high-energy
astrophysics. To investigate these issues, the propagation and interaction of the
emitted electromagnetic radiation, both within the source and during its journey
to the observer, must be understood. In this work we describe the development of
a tool to provide an accurate, ab-initio description of the propagation of gamma
rays in astrophysical environments. We expect this tool to contribute to the
understanding of the physics of cosmic gamma-ray emitters.

1. Introduction

During the last decades, the development of new instruments to collect radiation at
very high photon energies (MeV–TeV) has provided a wealth of information on sources
emitting in this spectral range (e.g., Hartman et al. 1999; Cheng & Romero 2004;
Abdo et al. 2009, Aharonian et al. 2009). Many sources were identified with objects
detected at lower energies, while many others remain still unidentified. To unveil the
nature of these emitters, their gamma-ray spectrum must be modeled to determine the
physical processes that produce the observed photon distribution. However, the observed
spectrum differs from the primary one emitted by the source, due to the interaction of
gamma-ray photons with electromagnetic and matter fields present either within the
source or between it and the observer. These fields modify the primary radiation,
changing the spectrum and introducing temporal and spatial variations in it. A precise
description of the modification is then crucial for a good comparison of the emission
models with observations.

Tools for radiation modification calculation have been developed since long time
ago, either using semi-analytical or numerical techniques (e.g., Protheroe 1986; Bednarek
2000; Aharonian et al. 2006; Bednarek 2007; Orellana et al. 2007; Khangulyan et al.
2008; Sierpowska & Bednarek 2005; Cerrutti et al. 2009; Kachelrieß et al. 2012).
Numerical techniques based on Monte Carlo schemes are especially well suited for
scenarios in which the optical depth of the intervening medium to the VHE radiation is
large. In this case simple absorption calculations are inadequate, because the secondary
particles produced by the interaction of primaries with background fields carry a large
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fraction of the energy, strongly modifying the spectrum. These particles continue to
interact with background fields, developing cascades in which the spectrum is modified
in several stages.

In spite of their increasing complexity, numerical Monte Carlo techniques are con-
fronted with a series of common problems, among them the computation of photon
cross sections, the computation of interaction products, or the treatment of charged par-
ticle deflections in magnetic fields. These problems were usually solved by simplifying
assumptions such as the one-dimensional treatment of cascades (e.g., Protheroe 1986;
Bednarek 2000), probably with semi-analytical corrections for the lateral development
(Kachelrieß et al. 2012), the use of background field symmetries to simplify cross sec-
tion computations, or the isotropization of charged-particle motion in magnetic fields
(Sierpowska & Bednarek 2005). These simplifications prevent the use of these tools
to investigate complex systems with non-symmetric background fields, magnetic fields
not strong enough to fulfill the isotropization condition, or phenomena with short scale
spatial or temporal variations.

In this paper we present an overview of an ongoing project by our group (Pellizza
et al. 2010; Pellizza et al. 2015), whose purpose is to overcome the aforementioned
problems and simplifications of numerical techniques. We aim at developing a high-
performance, ab initio simulation tool for radiation modification computation with
arbitrary sources and background fields. This tool, named PRINCE (PRopagation and
INteraction in Cosmic Environments), is described in Sect. 2.. Sect. 3. shows some
preliminary results, and Sect. 4. discusses some of our prospects to apply PRINCE to
astrophysical problems.

2. The PRINCE project

The main goal of the PRINCE project is to create a tool versatile enough to describe the
spectrum modification in almost any arbitrary environment. We focused in solving the
main shortcomings of previous approaches. As nearly all numerical codes devised for
this problem, PRINCE uses a Monte Carlo scheme to sample photons from the primary
source spectrum, and computes their propagation through the background fields. The
propagation of each particle is described as a set of continuous trajectories interspersed
by interactions between the travelling particle and a background one. The interactions
destroy the incoming particles, creating new ones. The propagation of the new particles
is then computed in the same way as that of primaries, until they reach the observer or
their energy falls below a specified threshold.

In the already mentioned previous works, the occurrence of an interaction of a
particle is determined by Monte Carlo sampling of its free path, given the background
density, the interaction cross section and the particle velocity. This scheme assumes that
the background field is homogeneous and stationary, which is an important limitation
for many astrophysical systems. To overcome this difficulty, we adopted a different
scheme. Following techniques developed for other astrophysical areas, such as N-body
gravitational codes, we compute the trajectories of the particles by dividing them into
small timesteps. The integration is trivial within each timestep, and the ocurrence of
an interaction can be Monte Carlo sampled from its probability, which is still related
to the same properties of particles and background. Using individual and adaptive
timesteps for each particle allows our code to adapt the interaction sampling to spatial
and temporal variations of the background density.
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The calculation of interaction probabilities (or mean free paths in previous works)
leads to the problem of computing total cross sections. In previous works usually
this computation is done in an analytical way, using different assumptions such as the
isotropy of background fields (e.g., Protheroe 1986; Bednarek 2000). Once again, this
prevents the use of these schemes for systems in which the assumptions are not fulfilled,
such as highly anisotropic photon fields near the companion of compact objects in
binary systems. To avoid this limitation, PRINCE computes the total cross sections
through numerical integration, allowing the use of any well behaved background field,
without any assumption at all. The sampling of the interaction products is also done
numerically through a third Monte Carlo algorithm, and requiring strict momentum and
energy conservation.

The trajectories themselves are easy to integrate. For neutral particles they are
straight lines traversed at constant velocity, while for charged particles only magnetic
fields (if present) are important to deflect them. As the code uses timesteps adapted
to the field variations (either temporal or spatial), the evolution of the particles within
each timestep can be assumed as occurring in a constant field, and the trajectories have
analytical solutions. The energy loss by synchrotron emission of charged particles in
magnetic fields is also computed.

The time variations of the spectra have never been computed self-consistently, the
only attempts were done assuming that this variation has a timescale much greater than
that of the cascade, and hence independent computations at different times were used
(e.g., Cerrutti et al. 2009). The spatial (or angular, in the plane of the sky) dependence
has been approached semianalytically for non-magnetic simulations, or through simpli-
fying hypotheses when magnetic fields are present, such as the isotropization of lepton
directions in strong magnetic fields (Khangulyan et al. 2008; Kachelrieß et al. 2012).
This assumptions still leave many realistic astropysical scenarios unexplored. With the
PRINCE scheme, the effects of magnetic fields are computed in a self-consistent way.

The PRINCE code implements the aforementioned physics, together with several
administrative routines that allow the user to set up and run simulations of the cascades
induced by VHE radiation in a large variety of astrophysical systems. The code is
written in the C programming language and parallelized using both MPI and OpenMP
to produce a high-performance tool. This tool is complemented with post-processing
routines that allow the users to obtain observables from the simulation results.

3. Preliminary results

In this section we present a set of two preliminary results to show the sort of problems that
can be explored with PRINCE. First, we simulated the electromagnetic cascade produced
by a monoenergetic point source of 10 PeV photons against the Cosmic Microwave
Background (CMB), and within a uniform magnetic field of intensity B = 10−15 G.
Fig. 1 depicts the trajectories of the cascading particles, showing the deflection from a
straight line. This deflection is larger for lower energy particles. As a result, an extended
source is observed, with a spectrum that varies with position in the plane of the sky
(Fig. 2).

The second, more realistic simulation involves the cascade produced by gamma-
ray photons from an extragalactic TeV source by two photon fields, the CMB and the
Extragalactic Background Light (EBL), and a randomly oriented intergalactic magnetic
field with a correlation length of 1 Mpc (Neronov et al. 2013). The CMB was modeled
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Figure 1. Electromagnetic cascade produced by a monoenergetic point
source of 10 PeV photons against the CMB, in a uniform magnetic field
with an intensity of 10−15 G. The trajectories of the particles involved in the
cascade are shown; low energy particles suffer larger deflections from the
primary motion direction than high energy ones.

Figure 2. Electromagnetic cascade produced by a monoenergetic point
source of 10 PeV photons against the CMB, in a uniform magnetic field with
an intensity of 10−15 G. This simulated image of the source presents an angular
extension in the plane of the sky that depends on energy.
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Figure 3. Spectra of a 10 TeV jet with an opening angle of 1 deg, after
traversing 600 Mpc of intergalactic medium, for different values of the mag-
netic field strength. The magnetic field coherence length is fixed at 1 Mpc.

as a 2.73 K blackbody, while for the EBL we used the model of Finke et al. (2010).
The source is a monoenergetic (E = 10 TeV) jet spreading with an opening angle of
1 deg, located at 600 Mpc from the observer. Fig. 3 shows the spectrum of the source
as a function of the intensity of the intergalactic magnetic field. The absorption of
TeV photons is due mainly to the EBL. The absorbed radiation is converted into lower
energy (10–100 GeV) photons through leptons produced by pair creation, giving rise to
the bump seen at these energies. The cooling of leptons through synchrotron radiation is
responsible for the variation of the spectral intensity at GeV energies with the magnetic
field intensity.

4. Discussion

PRINCE is an ongoing project devoted to the development of a high-performance
computing tool for the investigation of VHE radiation cascades. The tool allows the
simulation of the spectrum of gamma-ray sources in arbitrary environments, using
ab initio computations of the physical processes involved in radiation modification,
and eliminating as many simplifying assumptions as possible. The basis of the tool
is a computing code that uses three Monte Carlo schemes to solve the propagation
of individual photons emitted by the source through background electromagnetic and
matter fields, until it reaches the observer.

PRINCE has been successfully tested in simple astrophysical situations, such as
the cascades produced by TeV–PeV gamma-ray photons against extragalactic photon
fields, and with ambient magnetic fields. In the future, we plan to use this tool to
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simulate different astrophysical sources, including microquasars, active galactic nuclei,
and dark-matter annihilation signals. We expect that the comparison of our numerical
experiments with observations will allow us to provide clues to answer relevant as-
trophysical questions, such as the nature of dark matter or the intensity and origin of
intergalactic magnetic fields.

Acknowledgments. L. J. Pellizza acknowledges support from ANPCyT through
project PICT 2011-0959.
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Abstract. An important question in the modern astrophysics is related to the
origin and evolution of the supermassive black holes (SMBH) ubiquitous in
the galaxy nucleus. In this work is shown a robust method to determine the
estimator of the binned mass function of SMBH, nest , hosted by type I AGN.
The advantage of the method presented here is that the flux-limited of the survey
was taken into account in a more accurate way. For this work it was considered
data from Sloan Digital Sky Survey Data Release 7. We observed that the nest
was obtained with relative low bias and error. Also, it was noted that the BHMF
declines at high redshifts and peaks in the range of 108.6M⊙-109.3M⊙ shifting
in the direction of high masses when z increases.

1. Introduction

In a recent work we have developed a new data mining process to obtain a statistical
representative subsample of supermassive black holes (Pereira & Miranda, 2014). The
advantage of our method with respect to previous works in the literature is that the
flux-limited of the catalog was taken into account in a more accurate way. The basic key
of the method is in the fact that we combine robust statistical methods: The Freedman-
Diaconis rule (Freedman Diaconis 1980) to calculate the width of the bin used to obtain
the probability density function of the bolometric quasar luminosity (PDFL); and non-
parametric Monte Carlo bootstrap resample with replacement method (henceforward
just bootstrap) to estimate the bias and error of the derived data. The advantage of this
method is that no prior knowledge about the data distribution is necessary.

In that previous work we studied the mean Eddington ratio (MER) which is asso-
ciated with both the dynamic of accretion as with the balance between the gravitational
force and the radiation pressure of the accretion disk. We have shown that the MER
was related to the mean bolometric luminosity and with the available gas to the growth
of supermassive black holes. This last fact could be measured by the evolution history
of the mean accretion rate. Thus, we could present for the first time a clear physical
meaning for the MER.

Our intention is to study the connection between the Duty Cycle of type I AGN with
the cosmic star formation rate. The Duty Cycle function is defined as the ratio between
active and total supermassive black holes. For this propose, we have as a first step to
understand how is the distribution of the population of the active black holes hosted by
type I AGN. In this work we extend the method presented by Pereira & Miranda (2014)
in order to calculate the estimator of the mass function of supermassive black holes.

In this work we use as data sample the Sloan Digital Sky Survey Data Release
7 (SSDS DR7) Quasar Catalog (Schneider, 2010), that contains 105,783 type 1 AGN
(quasars) with luminosity greater than Mi = −22.0. In particular, we consider the
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catalog provided by Shen et al. (2011) - the SSDS DR7 Catalog of Quasar Properties.
This catalog contains supplementary information like: the full-width-at-half-maximum
(FWHM) of broad lines; central black hole masses (estimated using the FWHM);
luminosity of broad lines as well as the bolometric luminosity of the quasars. Our final
subsample contains 57, 496 objects with redshift from 0.03 up to 4.5.

This work is organized as follows: In the section 2. an improved method to obtain
the estimator of supermassive black hole mass function is presented. Our final remarks
are presented in the section 3.. We consider standard cosmological model (ΛCDM)
with Ωb = 0.04, Ωm = 0.24, ΩΛ = 0.76, h = 0.73.

2. The supermassive black hole mass function

Page & Carrera (2000) presented an improved method, when compared with the tradi-
tional 1/Va, to construct binned luminosity functions. The great contribution of that
work was the better way to take into account the survey flux limit. If we apply the same
considerations of Page & Carrera (2000) to obtain the supermassive Black Hole Mass
Function (BHMF), then it is possible to write:

nestbh (z,mbh) =
NAGN

mbh,max∫
mbh,min

zmax∫
zmin

dV
dz dzdmbh

, (1)

where nest
bh

is the binned estimate of the BHMF, NAGN is the number of objects found in
the bin ∆mbh and ∆z. Note that, because the subsamples are constructed considering the
probability density function of the bolometric quasar luminosity (PDFL) (see Pereira
& Miranda, 2014), the zmax that appears in Eq. (1) is just the maximum redshift of an
object into the bin, e.i., the zmax is determined by the flux-limit of the survey in a given
bin.

The error in nest
bh

(z,mbh) can be obtained by:

δnestbh (z,mbh) =
δNAGN

mbh,max∫
mbh,min

zmax∫
zmin

dV
dz dzdmbh

, (2)

where δNAGN can be given by the Poisson error. We also compute the error given by
Eq. (2) using the Bootstrap method (for details see the appendix of the work of Pereira
& Miranda, 2014). We observe that this method provides, with high accuracy, the same
δnest

bh
given by the Poisson error. This imply that the Bootstrap is well calibrated as an

error and bias estimator.
It is important to stress that the found bias is lower than a few percents of the value

of the nest
bh

. Here we consider a double power law to fit the nest
bh

in the following form:

nbh = n∗bh

[(
m∗

mbh

)γ1

+

(
mbh

m∗

)γ2]
, (3)

where γ1, γ2, n∗
bh

and m∗ are free parameters.
In Figure 1 are presented the BHMF for the redshift range [0.3, 2.1]. In general,

we observe that the BHMF declines for high redshifts and that the BHMF peaks in the
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range of 108.6M⊙-109.3M⊙ shifting for the direction of higher masses when z increases.
An important point is that our results are in accordance with the works of Vestergaard
et al. (2008), who obtained the BHMF considering the traditional 1/Va, and Wang et
al. (2006). In Table 1 we present the best fit data parameters in the redshift range of
z = [0.3, 2.1].

Figure 1. Binned Mass Function of supermassive black holes for redshifts
[0.3, 2.1].

3. Summary and perspectives

In this work is presented a new method to obtain the mass function of supermassive
black holes. The difference of the method presented here, in relation to other methods
described in literature, is that we employ a new data mining process in order to construct
a representative subsample of the SMBHs. The major advantage of this method is the
possibility of taking into account the catalog flux limit. This occurs because we consider
the behaviors of the probability density function of the bolometric quasar luminosity
distribution for each bin of mass, of the central black hole, and redshift. However, only
a fraction of the original sample can be used to construct the final subsample.

In order to evaluate our method, it was considered the non-parametric Monte Carlo
bootstrap resample with replacement (see Pereira & Miranda 2014 for details). From
this method was calculated the bias of the obtained BHMF. We verify that the bias is
lower than 4 percent of the final value of the BHMF estimators. This means that is
possible to have a binning method to construct the BHMF with very low bias.

The BHMF declines at high redshifts and peaks in the range of 108.6M⊙-109.3M⊙
shifting in the direction of higher masses when z increases.

The next step of our work will be calculate the mass function of the total super-
massive black holes in order to obtain the Duty Cycle of quasar. Also we will present a
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Table 1. Best fit parameters of BHMF at different redshifts

z n∗
bh

(×10−15) m∗ (×109) γ1 γ2
0.3 12.00 0.37 −6.41 −0.33
0.4 13.00 0.14 −0.66 −1.34
0.5 11.40 0.30 1.05 1.23
0.6 2.60 0.10 0.44 −80.03
0.7 7.60 0.38 −0.73 −1.56
0.8 8.00 0.60 −1.65 −1.32
0.9 7.09 0.47 −0.81 −2.28
1.0 8.46 0.71 −1.05 −1.73
1.1 9.15 1.11 −2.34 −1.35
1.2 8.57 0.71 −0.85 −2.27
1.3 8.56 0.93 2.10 1.19
1.4 8.87 1.05 2.08 1.27
1.5 8.8 0.94 2.32 1.04
1.6 8.48 1.36 1.81 1.63
1.7 5.82 0.86 2.71 0.59
1.8 6.23 1.27 −1.07 −1.78
1.9 4.43 1.12 2.14 0.65
2.0 4.10 1.70 −0.83 −1.76
2.1 2.51 3.79 0.57 3.53

robust model to connect the Cosmic Star Formation rate with the evolutionary history
of supermassive black holes hosted by type I AGN.
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Abstract. The gravitational entropy of a Kerr black hole is calculated using a
classical estimator based on the Bel-Robinson tensor, which has been recently
proposed by Clifton, Ellis, and Tavakol. We prove that, in the frame we consider,
Clifton et al.’s estimator does not reproduce the Bekenstein-Hawking entropy of
a Kerr black hole.

1. Introduction

Black holes are among the simplest objects of the universe. They can be fully described
by a small number of parameters: mass (M), angular momentum (J), and electric charge
(Q). Wheeler seems to have been the first to notice that, if we are not to abandon the
Second Law of Thermodynamics, material accreted by a black hole should not only
transfer to the hole its mass, angular momentum, and electric charge, but its entropy
as well. Bekenstein (1972, 1973) noticed that the properties of the area of the event
horizon of a black hole resemble those of entropy and proposed the following relation:

SBH =
A

4 l2
P
. (1)

Here, SBH is the entropy of the black hole, A is the area of the event horizon, and
lPl =

√
G~c−3 is the Planck length. A generalized second law of black hole thermody-

namics was also derived by Bekenstein (1974). Bardeen, Carter, and Hawking (1973)
formulated the four laws of black hole physics, which are similar to the four laws of
thermodynamics.

Since black holes can be fully described in terms of the gravitational field, it
seems reasonable to associate an entropy with the gravitational field itself. In absence
of a theory of quantum gravity, a statistical measure of the gravitational entropy is
not possible. Instead, approximations might be obtained using classical invariants of
General Relativity, as first suggested by Penrose (1979).

Several authors have tried to implement Penrose’s proposal. Recently, Clifton,
Ellis and Tavakol (2013) offered a novel definition for the entropy of the gravitational
field based on integrals over quantities constructed from the pure Weyl form of the
Bel-Robinson tensor. In particular, they calculated the gravitational entropy for a
Schwarzschild black hole, for a spatially flat Robertson-Walker geometry with scalar
perturbations, and for the inhomogeneous Lemaître-Tolman-Bondi solution.
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The main goal of the present work is to calculate the gravitational entropy of a
Kerr black hole using Clifton et al.’s proposal, and test whether such estimator still
reproduces the Benkenstein-Hawking entropy of a Kerr black hole.

Throughout this paper we use geometrized units G = c = 1.

2. Bel-Robinson estimator

Clifton, Ellis, and Tavakol (2013) defined the entropy of the gravitational field Sgrav
following these five requirements: 1) Sgrav ≥ 0, 2) Sgrav = 0 ⇔ Cabcd = 0, where
Cabcd is the Weyl tensor, 3) Sgrav gives a measure of the local anisotropy of the free
gravitational field, 4) Sgrav should be equal to the Bekenstein-Hawking entropy on the
event horizon of a black hole, 5) Sgrav should increase monotonically as structure forms
in the universe.

In particular, Clifton and coworkers constructed a definition of Sgrav in analogy
with the fundamental law of thermodynamics:

TgravdSgrav = dUgrav + pgravdV . (2)

Here, Tgrav, Sgrav, Ugrav and pgrav stand for the effective temperature, entropy, internal
energy, and isotropic pressure of the free gravitational field respectively, whereas V is
the spatial volume. Expressions for the effective energy density ρgrav and pressure pgrav
are derived from the Bel-Robinson tensor, which for Coulomb-like gravitational fields,
such as black hole spacetimes, take the form:

8πρgrav = 2α
√

2W
3
, (3)

pgrav = 0, (4)

whereα is a constant andW = 1/4
(
Ea

bEa
b + Ha

bHa
b

)
is the “super-energy density”,

and Eab and Hab denote the electric and magnetic part of the Weyl tensor, respectively.
The temperature of the gravitational field is defined as a local quantity that repro-

duces the Hawking (1974, 1975), Unruh (1976), and de Sitter temperatures (Gibbons
and Hawking, 1977) in the appropriate limits (Clifton at al., 2013). It has the following
expression:

Tgrav =

���u̇a za + H + σab zazb ���
2π

. (5)

Here ua is a timelike unit vector, za is a spacelike unit vector aligned with the Weyl
principal tetrad, H = Θ/3 being Θ = ∇aua the expansion scalar and σab = ∇(aub ) +
a(aub ) − 1/3 Θhab is the shear tensor; hab is the projection tensor hab = gab −
(ucuc ) uaub .

Clifton and coworkers calculated the gravitational entropy of a Schwarzschild black
hole, recovering the Bekenstein-Hawking entropy on the event horizon of the hole. In
the following section we extend their calculations to a Kerr black hole and analyze
whether such estimator still represents a good classical measure of the entropy of the
gravitational field.
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3. Bel-Robinson estimator for Kerr black holes

The line element of the Kerr spacetime in oblate spheroidal coordinates (t, r, θ, φ) takes
the form (Doran, 2000):

dτ2 = −
(
1 − 2Mr

ρ2

)
dt2 +

ρ2

r2 + a2 dr2 − 2
√

2Mr

r2 + a2 dt dr − 4aMr
sin2 θ

ρ2
dt dφ

+ 2a

√
2Mr

r2 + a2 sin2 θdφdr + ρ2dθ2 +

[(
r2 + a2

)
+ 2Mra2 sin2 θ

ρ2

]
sin θ2dφ2,

where ρ2 = r2 + a2cos2 θ. The constant M represents the mass of the black hole and a
its angular momentum.

Clifton et al.’s proposal is frame-dependent. We make the simplest choice for a
Kerr spacetime (see below). Specifically, we adopt the following unit vectors1 ua and
za:

ua =

(
r2 + a2

√−∆
√

r2 + u2
, 0, 0,

a√
r2 + u2

√−∆

)
, (6)

za = *,
√

r2 + a2
√

2Mr√−∆
√

r2 + u2
,

√−∆√
r2 + u2

, 0,
a
√

2Mr√−∆
√

r2 + u2
√

r2 + a2
+- , (7)

where u = a cos θ and ∆ = r2 + a2 − 2Mr. In the region interior to the outer event
horizon uaua = 1 and zaza = −1. The vector za is chosen to be orthogonal to the
hypersurfaces of constant time t. Because of the four-fold coordinate degrees of freedom
inherent to General Relativity, there is not a unique foliation of spacetime into a family of
nonintersecting spacelike 3-surfaces Σ. For the Kerr spacetime metric given by Eq. (6),
we have checked that the unit vectors ua and za satisfy all conditions for the calculation
of the gravitational entropy as stated by Clifton et al. (2013).

We now proceed to the calculation of the gravitational energy density and temper-
ature according to Eqs. (3) and (5), respectively.

The gravitational energy density takes the form:

ρgrav =
α

4π
M

(
r2 + u2)3/2 . (8)

In Figures 1 and 2,we show plots of ρgrav as a function of the radial coordinate for
θ = π/2 and θ = π/4, respectively. The gravitational energy density is everywhere
well-defined and positive, except towards the ring singularity, as expected.

We obtain the following expression for the temperature of the gravitational field:

Tgrav =

���−ra2 − Mu2 + ru2 + Mr2���
2π

(
r2 + u2)3/2√−∆

, (9)

1This calculation extends that presented in Pérez & Romero (2014), by choosing principal null tetrads. The
results, notwithstanding, remain the same.
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Figure 1. Plot of ρgrav as a
function of the radial coordinate
for a = 0.8 and θ = π/2.
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Figure 2. Plot of ρgrav as a
function of the radial coordinate
for a = 0.8 and θ = π/4.

where the absolute value brackets were added to avoid negative or complex values. A
3-dimensional plot of Tgrav as a function of the radial and angular coordinate for a = 0.8
is shown in Figure 3. We see that Tgrav is everywhere well-defined except towards the
inner and outer horizons.

As explained by Clifton et al. (2013), a small change in the gravitational entropy
density of a black hole occurs when a small amount of mass is added:

δsgrav =
δ
(
ρgravv

)

Tgrav
. (10)

In the expression above the element of volume is v = zaηabcddxbdxcdxd , where
ηabcd = η[abcd] , η0123 =

√|gab |. For the our particular coordinate choice:

v =

√
2Mr

(
r2 + a2

)1/2 (
r2 + u2

)1/2

a
√−∆

dφ du dr. (11)

We now proceed to calculate the gravitational entropy Sgrav by performing the
integration of Eq. (10) over the volume V enclosed by the outer event horizon on a
hypersurface of constant t, for a fixed value of a:

Sgrav =

∫

V

ρgravv

Tgrav
, (12)

in order to test whether the Bel-Robinson proposal in the choosen frame reproduces the
Bekenstein-Hawking entropy of a Kerr black hole. We notice, however, that indepen-
dently of the coordinate choice, the region inside the inner horizon is not time-orientable
since the region is chronology-violating (Visser, 1996). The contribution to the gravi-
tational entropy should come from the region between the inner and outer horizons.

Integral (12) can explicitly be written as:

Sgrav = β

∫ r+

r−

∫ π

0

r1/2
(
r2 + a2

)1/2 (
r2 + a2cos2 θ

)1/2
sin θ dθ dr

| f (r, θ) | ,
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Figure 3. Plot of Tgrav as a
function of the coordinates r
and θ for a = 0.8.
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Figure 4. Plot of SBR and SBH
as a function of the angular mo-
mentum a.

where β = 21/2πα M3/2. In the latter equation we have already integrated over
the azimuthal coordinate φ. The function f (r, θ) is defined as f (r, θ) ≡ −ra2 + Mr2 +

a2cos2 θ (−M + r). The domain of integration of Eq. (13) is:

T =
{
(r, θ) ∈ ℜ2/ r− ≤ r ≤ r+ ∧ 0 ≤ θ ≤ π

}
. (13)

We divide T into two subregions denoted D and G respectively, such that T = D ∪ G,

D =
{
(r, θ) ∈ ℜ2/ r− ≤ r ≤ r∗ ∧ 0 ≤ θ ≤ π

}
, (14)

where r∗ is the solution of the equation f (r∗, 0) = 0, and G = T − D.
Given the definitions above, Eq. (13) can be written as Sgrav = β

(
SD

grav + S
G
grav

)
where,

SD
grav =

∫ ∫

D

r1/2
(
r2 + a2

)1/2 (
r2 + a2cos2 θ

)1/2
sin θ dθ dr

| f (r, θ) | , (15)

SG
grav =

∫ ∫

G

r1/2
(
r2 + a2

)1/2 (
r2 + a2cos2 θ

)1/2
sin θ dθ dr

| f (r, θ) | . (16)

The integral given by Eq. (15) is an improper divergent integral; in particular it tends
to infinity for those values of r and θ such that f (r, θ) = 0. Conversely, integral (16) is
well defined for a ∈ (0, 1), and can be integrated numerically.

We show in Figure 4 the result of the numerical integration of SG
grav (see Eq. 16).

We also plot the Bekenstein-Hawking entropy, denoted SBH, as a function of the angular
momentum of the hole. It is clear that SBR does not reproduce the Bekenstein-Hawking
entropy of a black hole. We conclude that even in the domain of integration G where
the entropy is well defined, it is not a good approximation to the Bekenstein-Hawking
entropy, at least for the current coordinate choice. We do not discard that for a different
choice of vectors ua and za, the Bel-Robinson proposal may coincide with Bekenstein-
Hawking result. However, the fact that the innermost region of the Kerr spacetime is
not folliable and time-orientable suggests that our result might be general.
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4. Final remarks

We have computed the gravitational energy density, temperature, and gravitational
entropy of a Kerr black hole according to the Bel-Robinson estimator. The calculations
were performed using a pair of vectors ua and za spacelike and timelike, respectively,
that determine a Weyl principal tetrad. The choice of such vectors, however, is not
unique, thus being ρgrav and Tgrav frame dependent quantities. Under the simplest
coordinate choice, we proved that the gravitational entropy is not well defined.

The first requirement that a reliable classical estimator of the gravitational entropy
needs to fulfill is that it should be well-behaved in all types of horizons where quantum
field calculations can be used as an independent probe of the entropy. Only when
a complete match be obtained, the classical estimators can be used to evaluate other
families of spacetimes with some confidence.
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Abstract. We will expose in this paper our advances towards a proof of the
equivalence between FRW background expansion, during some period of time
that contains primordial inflation, and the statistical isotropy of the primordial
curvature perturbation ζ at the end of this period of time. Our motivation rests
on the growing interest in the existence of a preferred direction in the Universe
hinted by the continuous presence of anomalies in the CMB data.

1. Introduction

Cosmology is based on a, once believed, sacred principle: the homogeneity and isotropy
at large scales. The actual meaning of this statement is that perturbations in the en-
ergy density distribution at large scales, and in the CMB temperature, are statistically
homogeneous and isotropic, i.e., their n-point correlators in real space are invariant
under spatial translations and spatial rotations. However, the CMB data releases have
consistently presented a possible indication of the existence of a preferred direction in
the Universe in relation with the different anomalies in the data (Ade et. al., 2014;
Bennett et. al., 2013). Names as “the axis of evil” employed to describe some of the
anomalies are evidence of both the idea of a preferred direction and the position of
the cosmologists community about the violation of the sacred principle. There are two
ways of thinking of a preferred direction in the Universe, one at the background level
and the other at the perturbative level: at the background level we can have non-FRW
expansion which can be associated, for instance, to the presence of a shear in the metric
or an anisotropic curvature; whereas at the perturbative level we can have statistical
anisotropy in the perturbations, especially in the primordial curvature perturbation ζ .
It is quite reasonable to think that a non-FRW background expansion always feeds the
statistical anisotropy; moreover, sometimes a FRW background expansion is assumed
in the analysis of the statistical anisotropy. Notwithstanding, there is no any proof yet
regarding the actual relation between these two characteristics. It is our mission in this
paper to expose our advances towards such a kind of proof. We will sketch the main
argument of a proof of the equivalence between FRW background expansion, during
some period of time that contains primordial inflation, and the statistical isotropy of the
primordial curvature perturbation ζ at the end of this period of time, at the level of the
power spectrum, leaving the most delicate points for a deeper analysis and discussion
in a future publication.
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2. Statistical homogeneity and isotropy

Quantum mechanics only allows us to predict probabilities of different outcomes after
an experiment in an ensemble of systems, in contrast to classical mechanics which does
allow us to predict the exact outcome after an experiment in just one element of the
ensemble. Since the underlying physical mechanism in the generation of cosmological
perturbations is of quantum nature, the cosmologists are more interested in studying the
statistical properties of a perturbation map, say the CMB map or the galaxy distribution
map. The way of doing this is via the n-point correlators of the perturbations in real
space. Let’s define a scalar cosmological perturbation β(x) in real space and make a
Fourier integral expansion

β(x) ≡
∫

d3k

(2π)3 eik ·x β(k) , (1)

where β(k) is the Fourier mode function of β(x). The n-point correlators of β(x) are
averages over the ensemble of the products β(x1) β(x2)... β(xn) where x1, x2, ..., xn
represent different points in space1:

〈β(x1) β(x2)... β(xn)〉 ≡
∫

d3k1

(2π)3
d3k2

(2π)3 ...
d3kn
(2π)3 ei(k1 ·x1+k2 ·x2+...+kn ·xn) ×

×〈β(k1) β(k2)... β(kn)〉 . (2)

Thus, the correlation functions in real space may be studied via the correlation functions
in momentum space. Let’s see now the meaning of statistical homogeneity and statistical
isotropy.
Statistical homogeneity: of course the perturbation map is not homogeneous (i.e., it is
not invariant under spatial translations), but it may be that the probability distribution
function governing β(x) is, which is called statistical homogeneity. This means that the
n-point correlators in real space are invariant under translations in space, i.e.

〈β(x1 + d) β(x2 + d)... β(xn + d)〉 = 〈β(x1) β(x2)... β(xn)〉 , (3)

where d is some vector in real space establishing the amount of spatial translation.
The only way of achieving this, in view of Eq. (2), is expressing the argument in the
exponential function inside the integral as the addition of several terms of the form
f (xi − xj ), which in turn is possible (but it is not the only possibility) if the n-point
correlators in momentum space are proportional to a Dirac delta function:

〈β(k1) β(k2)... β(kn)〉 ≡ (2π)3δ3(k12...n)Mβ (k1, k2, ..., kn) . (4)

In the previous expression, k12...n means k1+k2+...+kn, and the function Mβ (k1, k2, ...,kn)
is called the (n − 1)-spectrum.
Statistical isotropy: once statistical homogeneity has been secured, in the form of Eq.
(4), we ask about the invariance under spatial rotations (i.e. isotropy). Of course again,

1The ensemble average inside the integral is over the Fourier mode functions only since they are the
stochastic variables.



Equivalence between FRW expansion and statistical isotropy 141

the perturbation map is not isotropic, but it may be that the probability distribution
function governing β(x) is, which is called statistical isotropy. This means that the
n-point correlators in real space are invariant under rotations in space, i.e.

〈β(x̃1) β(x̃2)... β(x̃n)〉 = 〈β(x1) β(x2)... β(xn)〉 , (5)

where x̃i = R xi, R being a rotation operator. To satisfy the above requirement, the
(n − 1)-spectrum must satisfy the condition

Mβ(k̃1, k̃2, ..., k̃n) = Mβ (k1, k2, ...,kn) , (6)

where the tildes over the momenta represent as well a spatial rotation, parameterized by
R, in momentum space. This condition has more explicit consequences in the spectrum
(1-spectrum) and the bispectrum (2-spectrum):

Mβ(k1, k2) ≡ Pβ (k1, k2) = Pβ (k) , (7)
Mβ (k1, k2, k3) ≡ Bβ (k1, k2, k3) = Bβ (k1, k2, k3) , (8)

where in the first line k = |k1 | = |k2 |, and in the second line ki = |ki |. Starting from
the trispectrum (3-spectrum), the condition in Eq. (6) about statistical isotropy in all
the higher-order (n − 1)-spectra cannot be reduced to similar conditions to the ones in
Eqs. (7) and (8), so that the minimal way of parameterizing the (n − 1)-spectra (with
n ≥ 4) will always be in terms of all the n wavevectors. The scalar nature of β(x) is
very important since, if it were a vector or a tensor, there would not be a way to make
the n-point correlators in real space invariant under spatial rotations. In those cases, we
relax the meaning of statistical isotropy and establish that it is present if the (n − 1)-
spectra of the scalar pertubations that multiply the respective polarization vectors or
tensors satisfy Eq. (6).

3. The separate universe assumption and the δN formalism

The separate universe assumption: this assumption refers to the behaviour of the
Universe after smoothing on a specified comoving scale k−1, during the super horizon
era k ≪ aH . It states that the spatial gradients, at most of order k/a, are negligible,
which actually means that the Universe at each comoving location behaves as if it were
homogeneous (Lyth & Liddle, 2009). Each smoothed region about each comoving
location is then regarded as a separate homogeneous universe. By virtue of this, the
form of the equations for the dynamical quantities in each separate universe is the same
as for the unperturbed quantities. The separate universe assumption is a powerful tool
for dealing with perturbations in the very early Universe and has become one of the
most employed methodologies as alternative to the standard cosmological perturbation
theory.
The δN formalism: the δN formalism (Dimopoulos et. al., 2009; Lyth & Liddle, 2009)
provides a powerful method to evaluate the primordial curvature perturbation ζ (x, t)
in terms of the perturbations of the fields a few Hubble times after horizon crossing
t∗ (corresponding to a flat slicing), and the derivatives of the unperturbed number of
e-foldings N (t, t∗) =

∫ t

t∗
H (t ′)dt ′ with respect to the unperturbed fields evaluated at t∗.

According to this formalism, once the separate universe approach has been invoked, and
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a comoving threading has been established, the value of ζ in a uniform energy density
hypersurface at the final time t is given by the perturbation in the time integral of the
local volume expansion rate θ along a curve starting at an initial flat hypersurface at the
time ti :

ζ (x, t) ≡ δN (x, t, ti ) − 〈δN (x, t, ti)〉 . (9)

Here, the bracket notation means a ensemble average (which corresponds to a spatial
average if there is statistical homogeneity). In many inflationary scenarios, the number
N of e-foldings depends only on the values of the fields at t∗ so we can write the
curvature perturbation as an expansion in the perturbations of the fields at this time.
Assuming the presence of just one scalar field and one vector field (the generalization
to more fields is straightforward), we have:

ζ (x, t) ≡ δN (φ(x), Ai (x), t) = Nφδφ + NiδAi +
1
2

Nφφ (δφ)2 + NφiδφδAi +

+
1
2

Ni jδAiδAj + . . . , (10)

where
Nφ ≡ ∂N

∂φ
, Nφφ ≡ ∂

2N

∂φ2 , Nφi ≡ ∂2N
∂Ai∂φ

, etc. , (11)

are the derivatives with respect to the scalar φ and the spatial components of the vector
field A.

4. FRW background expansion implies statistical isotropy

We will make the following assumptions:

1. The action is such that the FRW metric is an attractor in the background.

2. The fields involved are just scalar and/or vector fields.

3. The background expansion is FRW type during the whole time spanning from the
beginning of inflation to the time when the curvature perturbation ζ is evaluated.

By invoking the separate universe assumption, the form of the equations for the
dynamical quantities at each comoving location is the same as for the unperturbed
quantities. Thus, the field perturbation equations in momentum space do not depend
explicitly on k. They depend on time, thus on k∗, but do not depend on the direction of
k. Their solutions are, therefore, independent of the direction of k except for the set of
initial conditions {αnk}. However, the field perturbations are evaluated in the flat slicing,
so, taking into account the assumption 3, the whole perturbed metric in this slicing is
actually FRW which is conformally equivalent to Minkowski. This has as a consequence
that the set of initial conditions, when quantizing, can be written as {α̂nk = αnk ân

k } where
ân

k is the respective annihilation operator. Following the usual procedure to calculate
the power spectrum of the field perturbations, this implies that the latter are statistically
isotropic (and statistically homogeneous) at the level of the power spectrum (since the
αn
k

do not depend on the direction of k). This is valid for all the relevant cosmological
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scales since the time of horizon exit for each of them is contained in the period of time
defined in the assumption 3.

Now, if the background expansion is FRW type, the fluid that fills the universe
is perfect; therefore, by invoking assumption 2, the field configuration must be given
by any number of scalar fields and/or multiple randomly oriented copies (just one is
enough) of a triad of mutually orthogonal vector fields with the same norm. This must
be accomplished during the whole period of time defined in assumption 3.2 Thus, by
employing the δN formalism, we obtain (Gómez & Rodríguez, 2013)

Pζ (k1) = Piso
ζ (k1)[1 + g1

ζ (k̂1 · N̂1)2 + g2
ζ (k̂1 · N̂2)2 + g3

ζ (k̂1 · N̂3)2] , (12)

where

Piso
ζ (k1) = (Nφ)2Pδφ (k1) + (N1

i )2P1
+(k1) + (N2

i )2P2
+(k1) + (N3

i )2P3
+(k1) , (13)

and

gnζ =
(Nn

i )2[Pn
long

(k1) − Pn
+ (k1)]

Piso
ζ (k1)

, (14)

Pn
+ (k) being the parity even spectrum of the n-th vector field, Pn

long
(k) being the

longitudinal spectrum of the n-th vector field, and

N̂n =
Nn

|Nn | , (15)

where Nn is the vector formed by the derivatives of N with respect to the each spatial
component of the n-th vector field. However, because of the symmetries of the field
configuration, we have

N̂1 = ±î , (16)
N̂2 = ±ĵ , (17)
N̂3 = ±ẑ , (18)

(N1
i )2 = (N2

i )2 = (N3
i )2 , (19)

P1
+ = P2

+ = P3
+ , (20)

P1
long = P2

long = P3
long , (21)

and, therefore,
g1
ζ = g2

ζ = g3
ζ = gζ . (22)

Thus,

Pζ (k1) = Piso
ζ (k1)[1 + gζ [(k̂1 · î)2 + (k̂1 · ĵ)2 + (k̂1 · ẑ)2]] , (23)

= Piso
ζ (k1)[1 + gζ ] , (24)

where the last step is valid because of the director cosines property of a unit vector. We
conclude then that the power spectrum of ζ is actually independent of the direction of
k1, rendering the two-point correlator of ζ in real space statistically isotropic.

2This has as a consequence that the action must be consistent with the isotropy during the referred period
of time, e.g., the masses for the members of each triad must be equal (although not necessarily the same
masses among triads).
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5. Non-FRW background expansion implies statistical anisotropy

If the background metric is not FRW at some time, then the background metric is not
FRW at t∗ because of assumption 1. Thus (Gómez & Rodríguez, 2013),

Pζ (k1) = Piso
ζ (k1)[1 + g̃δφ (k̂1 · d̂δφ)2 + g̃1

+(k̂1 · d̂1
+)2 + g̃2

+(k̂1 · d̂2
+)2 +

+g̃3
+(k̂1 · d̂3

+)2 + g̃1
N (k̂1 · N̂1)2 + g̃2

N (k̂1 · N̂2)2 + g̃3
N (k̂1 · N̂3)2] ,

(25)

where none of the g̃, except perhaps for the g̃N (if the background metric is again FRW
at the time when ζ is evaluated), are the same, and, in contrast, all the d̂ directions are
the same and equal to the preferred direction at t∗. We conclude then that the power
spectrum of ζ does depend in this case on the direction of k1, rendering the two-point
correlator of ζ in real space statistically anisotropic.

6. Conclusions

When we take Sections 4 and 5 together, they show that, under the established assump-
tions, the FRW background expansion is equivalent to the statistical isotropy of ζ in
connection with its two-point correlator in real space during some period of time that
contains primordial inflation.
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Abstract. We present a new inequality1 between electric charge and some
measure of size for ordinary objects in General Relativity. A universal area–
charge inequality for arbitrary dynamical black holes was recently proved (Dain
et al. 2012). Our purpose is to generalize this result for ordinary bodies, or look
for a counterexample. Mainly, we discuss the spherical case in which there are
at least two intuitive notions of size, and finally we prove the inequality inside a
sphere with constant conformal electric charge density.

1. Introduction

Consider a static body with total electric charge Q. Let R be some measure of it size,
with units of lenght. We want to study if is there a universal relation between Q and R.
Of course, we should define precisely what do we understand about size. For instance,
R could be the area radius if it is the case of a spherical symmetric body (in general, the
area radius is well defined for any smooth 2–surface, but without spherical symmetry
we expect that it will be not a good measure of size).

We conjecture the following statement: Let Ω be a 3–dimensional region that has
total electric charge Q (Ω) and let R (Ω) be a measure of the size of Ω. Then, it holds
the inequality

Q (Ω)2 ≤ c4

G
R (Ω)2. (1)

The physical motivation of the above inequality is the following: a charged body
has a minimum size given by the total amount of electric charge inside it.

To define a quantity that tell us information about the size of any region of space is
a non trivial task, and it has several subtleties. There is often the case in which the notion
of size is related to the notion of geometric quantities like area or volume; however, it is
not difficult to realize that there is not true in general: just imagine two bodies with equal
surface area and equal volume but with arbitrary different shape. A precise discussion
of measures of size is present in Galloway et al. (2008), O’Murchadha (1986) and
Schoen et al. (1983). Likewise, there are cases in which the desired definition is clear
and unambiguous, such as a sphere.

We will take geometric units, such that G = c = 1, where G is Newton’s constant
of gravity and c the speed of light in vacuum.

1This project is part of Marcelo Rubio’s final work (Rubio, M. E. 2014) to obtain a degree in Physics.
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2. Size in spherical symmetry

It is natural to begin studying the conjecture in spherical symmetry; that is, Ω is a sphere
of area radius r; and take this quantity as a measure of the size of Ω. Of course, this is
not the most general measure one can choose.

In geometric terms, let Ω be a spherical surface with smooth boundary inside an
asymptotically flat initial data (Σ, hi j, Ki j ) of field equations. The surface area of the
sphere depends on the induced metric h, so we expect that r is a monotonic function of
ℓ, the proper distance of the sphere (in particular, this function is the identity in case of
flat geometry).

More precisely, the above conjecture in case of spherical symmetry can be enun-
ciated as follows:
Conjecture 2.1. Let Ω be a sphere contained in an asymptotically flat initial data of
field equations that satisfies the dominant energy condition, with electric charge Q, and
whose proper length is ℓ. Then, the inequality

Q2 ≤ ℓ2 (2)

holds.
We will take as initial data an asymptotically flat spatial hypersurface Σ with the

topology of R3, induced metric hi j and no extrinsic curvature; that is Ki j = 0. Thus, if
no matter density is present on Σ, the constraints are

R = 2E iEi; DiE i = 4πρ, (3)

where R is the 3–curvature scalar of h, E i the electric field 3–vector and ρ the electric
charge density. The symbol Dc denotes the Levi-Civitta covariant derivative on Σ with
respect to h.

We impose spherical symmetry taking plane–conformal coordinates (r, θ, ϕ) such
that the line element is

dh2 = Φ4(r)
[
dr2 + r2

(
dθ2 + sin2(θ)dϕ2

) ]
, (4)

where Φ4 is any conformal factor with ∆Φ ≤ 0, by virtue of the first constraint equation
(∆ is the flat laplacian operator). Note that the area radius of a r = r0 surface is not r0.
The proper distance is

ℓ(r) =
∫ r

0
Φ2(s)ds, (5)

and the area radius of a 2–surface r = r0 is

r (A)
0 = Φ2(r0)r0. (6)

An integration by parts of (5) shows that ℓ ≥ r (A) .
In terms of Φ, let’s define new conformal quantities

Ẽ i (r̂) := Φ6E i (r̂), ρ̃(r̂) := Φ6ρ(r̂), (7)

such that equations (3) become
D̃i Ẽ i = 4π ρ̃, (8)
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∆Φ = − Ẽ
2

4Φ3 , (9)

where D̃c is the Levi-Civitta covariant derivative with respect to the euclidean 3–
metric, and ∆ is the flat laplacian operator. Note that Q is conformally invariant under
the transformation (7).

3. Main result

Let (Σ, hi j,Ki j = 0) be initial data that contains a sphere with plane radius r = R and
constant conformal density ρ̃. We want to solve equations (8) and (9) for Φ(r), with
asymptotically flat condition at infinity, namely

lim
r→∞Φ(r) = 1. (10)

Since equation (9) is non linear, it is almost impossible to find a general solution thereof.
However, the manifestly elliptic character of this equation allows one to estimate the
exact solution, bounding it by functions that satisfy linear problems. All it is possible
because of the following powerful result (for more details, see Evans, 2010):
Theorem 3.1. Let Ω be a bounded region and consider the problem

∆u = f (u), u|∂Ω = g, (11)

where u : Ω→ R. Let u+ be a solution of

∆u+ ≤ f (u+), u+ |∂Ω = g, (12)

and u− a solution of
∆u− ≥ f (u−), u− |∂Ω = g. (13)

Then, there exists solution to (11) and moreover,

u− ≤ u ≤ u+ (14)

in Ω.
The functions u− and u+ are called, respectively, subsolution and supersolution of

u.
Let u be a function such that

Φ = 1 + u. (15)

Equation (9) implies that u satisfies the equation

∆u = − Ẽ2

4(1 + u)3 . (16)

The conformal electric field can be computed by virtue of equation (8):

Ẽ (r) =


4πρ̃

3 r, r ≤ R

4πρ̃R3

3r2 , r > R.
(17)
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The following first result will be crucial to prove the inequality.
Lemma 3.2. The function u− that satisfies the problem

∆u− = − Ẽ2

(
1 + π2

3 ρ̃
2R4

)3 , lim
r→∞u− = 0, (18)

is a subsolution of u.
Proof: Note that (18) is a linear problem on u−. The unique smooth solution of (18)
can be computed explicitly; in fact,

u−(r) =



2π2 ρ̃2

9
(
1+ π2

3 ρ̃2R4
)3

(
3
2 R4 − 1

10r4
)
, r ≤ R

16π2 ρ̃2R5

9
(
1+ π2

3 ρ̃2R4
)3
r

(
3
10 − R

8r

)
, r > R.

(19)

This function is monotonically decreasing and therefore

u−(r) ≤ u−(0) =
π2 ρ̃2R4

3
(
1 + π2

3 ρ̃
2R4

)3 ≤
π2

3
ρ̃2R4, (20)

which implies that

∆u− = − Ẽ2

(1 + π2

3 ρ̃
2R4)3

≥ − Ẽ2

(1 + u−)3 , (21)

and finally u− ≤ u. �
From this subsolution, we can construct explicitly a lower bound r (A)

− for the area
radius r (A) . In fact, defining Φ− := 1 + u−, we have

r (A)
− := rΦ−(r)2 ≤ rΦ(r)2 = r (A) . (22)

The electric charge for r ≤ R is Q (r) = 4
3π ρ̃r

3. Taking the difference between r (A)
− and

Q for any r ≤ R, we obtain

r (A)
− − Q

r
=

1

256
(
1 + 3Λ

16

)6

(
x2

5
− 3Λ

)2

+
15Λ − x2

40
(
1 + 3Λ

16

)3 − x + 1, (23)

where
x :=

4
3
π ρ̃r2, Λ :=

16π2

9
ρ̃2R4. (24)

Thus, that difference is a fourth order polynomial in x, PΛ(x) := (r (A)
− − Q)/r. Since

r ≥ R, x varies from 0 to
√
Λ, implying that

PΛ(x) ≥ 7Λ

20
(
1 + 3Λ

16

)3 −
√
Λ + 1 ≥ −

√
Λ + 1, (25)
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which is positive for all 0 ≤ x ≤ √Λ if
√
Λ ≤ 1; that is, if

Q ≤ R. (26)

We have proved the main result of this work, enunciated in the following
Theorem 3.3. Let (Σ, hi j ) be a time symmetric asymptotically flat initial data that
satisfies the dominant energy condition and contains a sphere of plane radius R with
constant conformal density and total electric charge Q, such that

R ≥ Q. (27)

Then it holds the following inequality

r (A) (r) ≥ Q (r) (28)

for all r ≤ R.

4. Comments and perspectives

We have found a relevant evidence of the validity of a universal inequality between
charge and size for bodies. Remembering that ℓ ≥ r (A) and by virtue of Theorem 3.3,
it also holds the inequality with the proper lenght. Since r (A) ≥ r, the hypothesis of the
Theorem implies that inequality (27) holds in the boundary of the sphere. However, it
is not possible to change that hypothesis; the condition r (A) (R) ≥ Q (R) is weaker than
R ≥ Q (R).

From this work it is possible to continue the research in order to prove the inequality
in spherical symmetry, approaching both analytically and numerically.
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Abstract. We study the equilibrium and stability of charged compact stars. In
order to do so, we choose to solve numerically a system of differential equations
describing the structure of charged compact objects, including the generalization
of the Tolman-Oppenheimer-Volkoff equation for this class of objects. We
assume a polytropic equation of state for the fluid, and for the relation between
charge density and the fluid’s energy density, we have assumed a more realistic
relation than the linear relation usually used in the literature and compared the
results with this case.

1. Introduction

Compact stars are the fate that awaits many stars after their lifetime. During the luminous
life of the star, part of the original Hydrogen is converted in fusion reactions to heavier
element. When a sufficient quantity of heavy elements is produced in the core of the
star, it can collapse, and an enormous energy will be released in the explosion of the
star.

The cessation of the fusion marks the end of the luminous life of the star, its duration
and the final stage of the star depends on its mass. Neutron stars and black holes are the
destiny of massive stars (>8M⊙) in which nuclear fusion reached the iron end point - the
end point of exothermic fusion. During the collapse, high densities are attained ad the
neutralization process (electron capture by protons, producing neutrons and neutrinos)
is favored. Therefore neutron stars are formed mainly by degenerated neutrons, which
counterbalance the gravitational inward force. They are extremely dense stars having 1
or 2M⊙ inside a 10 km radius [1].

For stars up to a few solar masses, nuclear fusion does not proceed all the way
through iron, stopping at the CNO chain. At this stage the core will collapse, although
not reaching densities high enough to initiate the neutralization reaction. The remain
star will be a white dwarf, typically of 1 M⊙ and radios of ∼ 5000 km [1]. Matter inside
the white dwarf is ionized and further collapse is prevented due to degenerate electron’s
pressure.

In general relativity, the equations describing hydrostatic equilibrium of compact
stars are known as the Tolman-Oppenheimer and Volkoff equations. A feature of these
equations is that pressure appears at the same foot as energy density, so at the same time
it will contribute to prevent gravitational collapse, it will also contribute to the energy
density, which causes the gravitational collapse [2]. White dwarfs become unstable
above the critical mass of 1.4 M⊙, known as the Chandrasekhar mass, which is the
limit mass for an object supported by the pressure of relativistic degenerated electrons.
Meanwhile, modeling neutron stars as an ideal gas of degenerate neutrons, Oppenheimer
and Volkoff found a mass limit of 0.7 M⊙, which yields the maximum mass that can
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be sustained against gravitational compression by the pressure of degenerated neutrons
and their repulsive interaction. More realistic models can increase this limit up to ∼ 4
M⊙ [2].

The possibility that stars could actually contain a non-vanishing net charge was
first pointed out by Rosseland in 1924 [3]. He modeled stars as an ideal gas of positive
ions and electrons initially electrically neutral and concluded that, due to their greater
thermal energy, the electrons tend to escape the star more often than the ions, and thus
induce a positive charge on the star. The process will be carried on until the inward
force on a free electron is equal to the inward force on a positive ion.

Rosseland [3] also showed that in a Newtonian star charge density should be
proportional to mass density. In the following years this relation remained used, even
for compact stars, for which general relativity should be used, see [4], [5], [6] and [7],
among others.

In this work we study the equilibrium and stability of charged compact stars using
a more realistic relation between the charge and energy densities than the linear relation
usually assumed in the literature in order to determine if such charged objects could
really exist in a stable condition in nature.

2. The structure of charged compact stars

2.1. Tolman-Oppenheimer-Volkoff equations
We follow the steps performed in [8], whose results we wanted to reproduce first. We
take the line element for a spherically symmetric and static star:

ds2 = eνc2dt2 − eλdr2 − r2(dθ2 + sin2θdφ2), (1)

and model the matter inside as a perfect fluid plus an electromagnetic field:

Tµ
ν = (P + ε)uµuν − Pδµν +

1
4π

(
FµαFαµ − 1

4
δ
µ
ν FαβFαβ

)
, (2)

where P is the pressure, ε is the energy density of the fluid.
A spherical surface of radius r, within the star, presents an electric field E:

E(r) =
1

ε0r2

∫ r

0
r ′2ρch (r)eλ/2dr ′, (3)

and encloses an electric charge Q:

Q(r) =
∫ r

0
r ′2ρch (r)eλ/2dr ′, (4)

where ρch is the star’s charge density.
The star’s mass inside a spherical shell of radius r is then:

M (r) =
4π
c2

∫ r

0
r ′2

(
ε +

ε0E2

2

)
dr ′. (5)

Using the (00) component of Einstein’s equation:



Charged compact stars 153

e−λ

r2

(
r

dλ
dr
− 1

)
+

1
r2 =

8πG
c4

(
ε +

ε0E2

2

)
, (6)

the four equations which describe the equilibrium of charged stars [9] turn out to be the
generalized Tolman-Oppenheimer-Volkoff equation:

dP
dr
= −

G
[
4πr3

(
P
c2 − ε0E

2

2c2

)]
(ε + P)

c2r2
(
1 − 2GM

c2r

) + ρchEeλ/2, (7)

and

dE
dr
= −2E

r
+
ρcheλ/2

ε0
, (8)

dM
dr
= 4πr2

(
ε

c2 +
ε0E2

2c2

)
, (9)

dλ
dr
=

8πG
c4 re−λ

(
ε

c2 +
ε0E2

2c2

)
−

(
eλ − 1

r

)
. (10)

Since we have 6 variables, P, E,M, λ, ρch and ε, and only 4 equations, we need two
other equations in order to solve the system of eqs. (7)-(10). One of them is the relation
between the charge density ρch and the fluid energy density ε and comes from the
hypothesis that the star is more sorely charged in its exterior shells than in its center:

ρch = f /ε, f = const. (11)

Following the steps of [8], we see that the effects in the structure of the star due to
the presence of charge begin to be notable for f ∼ 3 × 10−4 (MeV/fm3)1/2/km. We use
this value, which was calculated for the linear case, also for the inverse relation so we
can compare them.

The other missing equation will be a polytropic equation of state, that is, a simple
equation of state such as p = KεΓ. A star having such equation of state is called a
polytrope.

2.2. Matter inside the star
We model the interior of the neutron star as a non relativistic degenerate ideal Fermi
gas of nuclei and electrons.

The assumption of degeneracy (all quantum states up to a given energy occupied)
is valid for low temperatures T - much less than the Fermi energy EF .

T << EF =

√
k2
F + m2

e, (12)

where we have set ~ = 1 = c, then kF is the Fermi momentum and me is the electron
mass.

To obtain the equation of state we need an expression for the pressure p (in SI
units),
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p(kF ) =
8π

3c(2π~)3

∫ kF

0
(k2c2 + m2

ec4)−1/2k4dk . (13)

Considering the non relativistic limit, where kF<<me:

p(kF ) =
m4

ec5

3π2~3

∫ kF /mec

0
u4du

=
m4

ec5

15π2~3
(kF/mec)5

=
~2

15π2me

(
3π2 Z ρ
AmN

)5/3

.

Thus, using Einstein’s equation from special relativity ε(r) = ρ(r)c2 , the pressure
yields:

p(kF ) ≈ Knonrelε
5/3, (14)

where:

Knonrel =
~2

15π2me

(
3π2 Z

AmNc2

)5/3

. (15)

We see that the non relativistic Fermi gas gives a polytropic equation of state with
Γ = 5/3 [10].

The value of the constant Knonrel depends on the type of ions of which the star is
formed. We follow the steps of [9] and choose Knonrel = 0.05 fm8/3 (c = 1 = ~).

Equation (14) is the second missing equation, now we can proceed to solve numer-
ically the system of eqs. (7)-(10), (11) and (14).

3. Results

We solve this system with the following boundary conditions:

E(r = 0) = 0, M (r = 0) = 0,
λ(r = 0) = 0, P(r = 0) = Pc . (16)

The equations are to be integrated from the center of the star, r = 0, to the point
where P = 0. Zero pressure can support no overlying material against the gravitational
attraction exerted on it from the mass within and so marks the edge of the star. The
point R where the pressure vanishes is therefore the radius of the star and M (R) its
gravitational mass.

Figures 1 and 2 show the total mass against the radius obtained for stars with both
cases of charge distribution studied and a fixed value for f . It can be observed that in
both cases there is a maximum mass as expected and both are ∼ 1.4M⊙.
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Figure 1. Total mass × total radius for stars with a linear relation (left) and
a more realistic relation (right) between charge density and energy density,
such as: ρch = f ε (left) and ρch = f /ε (right).

Figure 2. Total mass ×central pressure for stars with a linear relation (left)
and a more realistic relation (right) between charge density and energy density,
such as: ρch = f ε (left) and ρch = f /ε (right).

The solutions of eqs. (7)-(10) are configurations in hydrostatic equilibrium however
equilibrium does not assure stability. A necessary condition for stability is that the
central density of the star must increase along with its mass, thus:

∂M (εc, f )
∂εc

> 0 (17)

Figures 3 and 4 show the total mass of stars as a function of their central pressure
for both cases of charged distribution. As well as in Figures 1 and 2, there is a maximum
value for the mass of the star above which there are no stable configurations, thus the
stable region ends at the mass limit.

4. Conclusions

We verified the existence of an upper mass limit for hydrostatic equilibrium, and little
dependence of the total mass achieved with the charge distribution of the star for Figures
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1 and 2 and Figures 3 and 4 are extremely similar, the only substantial difference being
that stars with a linear relation between charge density and energy density achieve a
slightly greater mass. We also showed it is possible to obtain stable configurations using
the inverse relation between the charge density and the energy density of the star.

We want to investigate the stability and equilibrium conditions for more realistic
models for distributions of charge inside compact stars.
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Abstract. Large spectroscopic surveys in the IR and submillimeter are crucial
to study large scale processes such as the evolution of galaxies through the
coevolution of the processes of star formation in the host galaxies and black hole
accretion in active galactic nuclei. The mid-to-far-IR is where most energy is
emitted by the dust obscured processes of star formation and black hole accretion.
To unravel such processes along the history of galaxies and establish their role
along evolution, rest frame mid-to-far IR spectroscopy is needed, because at
these frequencies dust extinction is at its minimum and a variety of atomic
and molecular transitions, tracing most astrophysical domains, occur. Future
IR space telescopes, such as the SPace Infrared telescope for Cosmology and
Astrophysics (SPICA), and ground-based large submillimeter telescopes, such
as the Cerro Chajnantor Atacama Telescope (CCAT), will be able to perform
such surveys in a synergic way.

1. Introduction

The strong correlation in the local Universe between central black hole mass and stellar
velocity dispersion of the galactic bulge (the “Magorrian Plot”, Magorrian et al. 1998;
Ferrarese & Merrit, 2000) implies a strong physical relation between black hole accretion
in Active Galactic Nuclei (AGN) and star formation (SF). On a cosmic scale, the
evolution of supermassive black holes (SMBHs) appears tied to the evolution of the
star-formation rate (SFR) (Marconi et al. 2004; Merloni 2004). In Fig.1 it is shown that
the shape of the star formation rate density as a function of redshift (e.g. Burgarella et al.
2013) is similar to the shape of the black hole accretion density (e.g. Delvecchio et al.
2014). Heckman et al. (2004) made a study of 23,000 low-redshift narrow emission-line
AGNs of the Sloan Survey, suggesting that the growth of black holes through accretion
and the growth of bulges through star formation are related at the present time in the
same way that they have been related, on average, throughout cosmic history.

One of the major goals of the cosmological studies of galaxy evolution is to under-
stand the full cosmic history of energy generation by stars (through fusion processes)
and black holes (through accretion of matter). This history is traced not only by high
luminosity objects, i.e. the quasars, but mainly by low to intermediate luminosity galax-
ies, such as those objects corresponding to Seyfert galaxies in the local Universe, which
dominate at the “knee” of the Luminosity Function. The importance of measuring these
energy production rates lies also in the fact that they provide a measure of the built up
of the mass of the central black hole, on one side, and of galactic stars, on the other
side, and their integral over cosmic times must —ultimately— be consistent with the
observed galaxy and black hole masses. This will lead us to understand the inter-relation

157



158 L. Spinoglio

of quasar activity and star formation, and ultimately the key processes responsible for
shaping the mass and luminosity functions of galaxies.

Optical continuum measurements alone are completely inadequate to obtain these
data and even optical spectroscopy on a massive scale cannot yield definitive answers
because dust reddening may block our view at short wavelengths. What is needed
therefore is spectroscopy at longer rest wavelengths to uncover how much of this emission
is partly or heavily extinguished.

Figure 1. Left: (a) Star Formation Rate Density (SFRD) from IR and UV
observations (Bulgarella et al. 2013). The UV determination of the SFRD is
about a factor ten lower than the IR SFRD, demonstrating that IR observations
are essential in the redshift range 0 < z < 3. Right: (b) Black Hole Accretion
Rate Density (Delvecchio et al. 2014)

2. Rest-frame mid-IR spectroscopy to study galaxy evolution

2.1. Comparing different techniques and regimes for separating AGN and SF
We want to compare in this section the various techniques to detect and separate the
AGN and SF component in galaxies. There are many different criteria that can be
used to distinguish AGN and SF, but there are limits and potentialities of the different
observational techniques:

- UV/Optical (consider, e.g. the “BTP” classification based on optical spectra,
proposed by Baldwin, Phillips & Terlevich, 1981) and even near-IR observations
are able to measure the galaxy morphology and the spectra, however they seri-
ously suffer from dust obscuration. As an example, Fig.1(a) shows that the UV
measurements of the star formation rate density (SFRD) as a function of redshift
is missing 90% of the SFRD observed in the IR.

- X-ray observations are good tracers of AGN, however only weak X-ray emission
can be detected from star formation and, even more importantly, heavily-obscured
AGN (Compton-thick) are completely lost.



Galaxy evolution studies with large IR/sub-mm surveys 159

- Radio observations (with planned facilities like EVLA,1 SKA2) can detect AGN
and SF to large redshift and can see through gas and dust, they can measure
morphology and spectral energy distributions (SED), detect polarization and
variability, which are signatures of AGN, however not always redshifts can be
measured. At its highest frequencies, SKA could be able to measure redshifted
molecular lines in the ISM of galaxies.

- mm/submm observations (e.g. ALMA,3 CCAT4) will provide information on
SF from spectral features (redshifted CO, [CII], etc.), however no clear AGN
tracers are available at the longest far-IR/submillimeter wavelengths. From the
results of recent Herschel observations, it has been shown that the high-J CO
lines spectral line energy distributions (SLED) could in principle distinguish
between photodissociation regions, originated in SF environments, and X-ray
Dominated Regions (XDR), excited by AGN. However, the presence of shocks
and mechanical energy originated by supernovae makes the interpretation of the
CO SLED uncertain (see, e.g. van der Werf et al. 2010, Rangwala et al. 2011,
Spinoglio et al. 2012a, Meijerink et al. 2013).

- Rest-frame mid-IR/far-IR imaging spectroscopy can provide a complete view of
galaxy evolution by measuring the role of AGN and SF because (provided that
large field of view and high sensitivity can be reached) it can trace simultaneously
both SF and AGN, measure redshifts and see through large amounts of dust. It
seems therefore to be the most promising technique.

2.2. The power of infrared spectroscopy
Figure 2(a) shows how well the IR fine structure lines cover the density-ionisation param-
eter space which characterises the photoionised and photon dissociated gas (Spinoglio &
Malkan 1992). A combination of these lines and line ratios can trace both star formation
and black hole accretion. The long wavelengths of these lines, ranging from the far-IR
for the photodissociation and HII region lines through the mid-IR for the AGN lines, to
the near-IR for the coronal lines, ensure that we can observe these different tracers by
minimising the effect of dust extinction.

The rich rest-frame mid-IR spectra, that have been observed in active and starburst
galaxies in the local Universe with the mid-IR spectrometer IRS (Houck et al. 2004)
onboard the Spitzer satellite (Werner et al. 2004) can be observed in the far-IR in
the redshift range of 0.4 < z < 3.0. Figure 2(b) shows the average Spitzer IRS high-
resolution mid-IR spectra (Tommasin et al. 2010) of subclasses of Seyfert galaxies from
the 12µm Seyfert galaxy sample of Rush, Malkan & Spinoglio (1993). For comparison,
we also show the average spectrum of starburst galaxies (Bernard-Salas et al. 2009).
The quality of the data is very high and shows the many features that can distinguish
between AGN and star formation processes, such as the high-ionisation lines from [NeV]
at 14.3µm and 24.3µm, originated exclusively from AGN, or the 11.2µm PAH feature

1EVLA is the Expanded Very Large Array radio telescope: http://www.aoc.nrao.edu/evla/
2SKA is the Square Kilometre Array radio telescope: https://www.skatelescope.org/
3ALMA is the Atacama Large Millimeter/submillimeter Array: www.almaobservatory.org/
4CCAT is the Cerro Chajnantor Atacama Telescope: www.ccatobservatory.org/
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and the low ionisation lines from [NeII] and [SIII], typical of HII and star forming
regions. Mid-/far-IR imaging spectroscopy is therefore able to trace galaxy evolution
throughout cosmic times in an unbiased way by minimising dust extinction.

Figure 2. Left: (a) The IR fine-structure lines cover a large volume of the
physical parameters characterising the gas: critical density of each transition
as a function of its ionisation potential (Spinoglio & Malkan 1992) Right:
(b) Mid-IR spectra of active and starburst galaxies from the Spitzer Space
Telescope (Tommasin et al. 2010).

3. Spectroscopic cosmological surveys in the rest-frame infrared

Due both to the atmospheric absorption, which leaves open only a few sparse windows
in the near- and mid-IR, and to the high thermal background at room temperature at
IR wavelengths, it has soon been realised that, to be successful, infrared astronomy
had to be done from space telescopes, as it was demonstrated by the success of the
various space missions, from IRAS (Neugebauer et al. 1984) to Herschel (Pilbratt et al.
2010). However, the poor sensitivity and multiplexing power of the spectrographs of
these spacecrafts have limited the observations to only a few samples of distant galaxies
(e.g., Yan et al. 2007; Menéndez-Delmestre et al. 2009; Sturm et al. 2010). Substantial
progress in studying galaxy evolution therefore can only be achieved by using direct mid-
to far-IR spectroscopic surveys, which will provide measured (rather than estimated)
redshifts and also unambiguously characterise the detected sources, by measuring the
AGN and starburst contributions to their bolometric luminosities over a wide range of
cosmological epochs, through their spectroscopic signatures.

SPICA (Nakagawa et al. 2011) will be the next-generation, space infrared ob-
servatory, which, for the first time, will contain a large (3.2-meter) actively cooled
telescope (down to 6K), providing an extremely low background environment. With
its instrument suite, SPICA will provide not only high spatial resolution and unprece-
dented sensitivity in mid- and far-infrared imaging, but especially large field medium
spectral resolution imaging spectroscopy. These characteristics put SPICA among the
best planned facilities to perform spectroscopic cosmological surveys in the mid- to
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Figure 3. Predictions of starburst galaxies and AGN detections as a function
of redshift, per spectral line and object type. AGN are shown as continuum
lines, starburst galaxies as dashed lines. The survey covers 0.5 deg2 of sky,
requesting 450 hours of total time with SAFARI-SPICA (Spinoglio et al.
2012b).

far-IR. Using theoretical models for galaxy formation and evolution constrained by the
luminosity functions observed with both Spitzer and Herschel and the relations between
line and continuum far-IR luminosity, as measured in the local Universe for active and
starburst galaxies, Spinoglio et al. (2012b) have predicted the intensities of key lines
able to trace AGN and star formation activity as a function of redshift.

Figure 3 compares three models showing the number of galaxies that can be
detected by the far-IR spectrometer SAFARI (Roelfsema et al. 2012) an FTS with a
2′ × 2′ field of view, planned to be onboard of SPICA, in each spectral line for the two
different populations of AGN- and starburst-dominated galaxies. The total numbers of
detectable objects agree, taking the different models, to within a factor of 2-3 for most
lines and z ranges. At least a thousand galaxies will be simultaneously detected in four
lines at 5σ over a half square degree. A survey of the given assumptions will lead to the
detection of bright lines (e.g., [O I] and [O III]) and PAH features in about one thousand
of galaxies at z > 1. About one hundred of z > 1 AGN will be detected in the [O IV]
line, and about ten of z > 1 sources will be detected in [Ne V] and H2.

On the other hand, the Cerro Chajnantor Atacama Telescope (CCAT) (Sebring et
al. 2010) will be complementary to SPICA, being able to observe the [OIII]88µm line at
z > 1.3, where this line leaves the SAFARI spectral range. CCAT will be very efficient
for studies of [CII], an important coolant of the interstellar medium, at all z < 5. Just
within the range 3 < z < 4, it will detect more than 300 galaxies at 5σ level in a 0.5
deg2 survey (Spinoglio et al. 2012b).

4. Conclusions

We summarise this work with these points:

• After many decades of efforts, we are close to having reliable measures of SF rate
and AGN accretion power, through MIR/FIR spectroscopic surveys, unaffected
by dust.
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• Accurately measuring the star formation rate and the AGN accretion power is the
first step towards understanding galaxy evolution over cosmic history.

• FIR spectroscopic surveys with SPICA will physically measure galaxy evolution.

• Given the expected sensitivity of SAFARI∼2.5×10−19 W/m2 (5σ,1 hr.) thousands
of sources will be detected in more than 4 lines in typical 0.5 deg2 surveys (t=450
h).

• Complementary to SAFARI, CCAT will detect several hundreds of galaxies at
R∼1000 in a 0.5 deg2 survey in 4.5 hours in [OIII]88µm and thousands of galaxies
in [CII]158µm.

• These surveys will clarify the inter-relation between quasar activity and star
formation, which of the two processes influence the other and ultimately will test
the processes able to shape the mass and luminosity functions of galaxies.
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Abstract. We present the main properties of the behaviour of the universe in
the framework of the recent proposal of a geometric theory of gravity (GSG)
based on a single scalar field. Interesting distinctions from general relativity
(GR) appear when developing cosmological models in this new theory. In GSG,
flatness, accelerated expansion and the initial singularity of the universe, three
important issues surrounding the current standard cosmology, are overcome
without making use of any exotic fluid.

1. Introduction

Throughout the last century General Relativity has become the paradigmatic scheme
for the study and the description of gravitational phenomena. Although its success
has been very impressive, many alternative proposals have been set forward in recent
years that try to modify GR in several respects, in particular to get around the need of
introducing dark matter and dark energy which represent substances unknown at the
laboratory scale. Most of the proposed modifications occur in the realm of cosmology
where the intensity of the gravitational field is strong enough to excite new phenomena
not contemplated by GR. However because of the highly paradigmatic status of GR
only a narrow set of possible modifications of this theory has been discussed up to date.
A typical example consists in replacing the scalar curvature R in the Einstein-Hilbert
action with a somehow arbitrary function F (R).

This is not the road that one should follow according to Mach’s epistemological
critique. Following Mach, the natural way to undertake a deep modification of a
paradigmatic theory is to return to the main ideas of its primordial phase, re-examine
its foundations and its evolutionary way to become paradigmatic in a historical context.
Although this does not guarantee success to the new proposal, this thinking can lead
us to find a really alternative physical description to the previous model. GR itself
arose from deep conceptual changes existing in Newton’s universal gravitation and it
represented a revolution in theoretical physics.

After the advent of special relativity it was thought that the incorporation of the
gravitation to the relativistic concept would naturally occur by substituting the Newto-
nian three-dimensional potential by a scalar function defined in the Minkowski space-
time. However, the proposals by Nordström, Einstein, Grossmann and others, along this
line, were not successful. The previous scalar theories showed to be problematic for
two main properties that they own, the source of the gravitational potential is the trace
of the energy-momentum tensor and the gravitational metric is conformally flat.

165



166 J. D. Toniato et al.

This scenario changed when it was shown that is possible to establish a geometrical
description of the gravitational phenomena, as in GR, from a single scalar field. The so
called Geometric Scalar Gravity (GSG) follows the main idea of general relativity and
assume as an a priori that gravity is described by a Lorentzian geometry. In general
relativity the ten components of the metric tensor are the basic variables of the theory (up
to diffeomorphism invariance). Here the metric tensor is determined by the derivatives
of a fundamental independent physical quantity represented by the scalar field Φ. This
means that although we make use of a scalar field to represent all gravitational processes
we do not follow the previous examples of scalar gravity.

GSG is not only in complete agreement with the solar system observations (see
references) but also provides a new theoretical tool to inquiry of gravitational systems
that will enable us to have a different look to unanswered questions in the area. In
this study, in particular, we develop a cosmological model in accordance what we
know about the universe today. We will see how GSG naturally overcomes some main
existing difficulties in the standard cosmology: flatness, accelerated expansion and
initial singularity.

2. Geometric Scalar Gravity: a short summary

The main difference between GSG and the ancient scalar theories is that the gravitational
potential Φ only interacts with all kind of matter and energy trough the metric structure,

qµν = α ηµν +
β

w
∂µΦ ∂νΦ , (1)

where ∂µ ≡ ∂/∂xµ , w = ηµν∂µΦ ∂νΦ and the coefficients α and β are fixed as

α = e−2Φ , β =
(α − 1)(α − 9)

4
. (2)

In GSG the metric is not a fundamental independent quantity but a function of the scalar
field Φ. The latter is assumed to satisfy the following equation,

√
V ✷Φ = κ χ , (3)

with,

V = α + β =
(3 − α)

4α3

2
, (4)

and the ✷ is the d’Alembert operator construct with the gravitational metric of Eq.
(1). The source of the gravitational field, at the r.h.s. of the dynamical equation, is
constructed out of the following expressions:

E =
1
Ω

Tµν ∂µΦ ∂νΦ (5)

Cλ =
β

αΩ

(
Tλµ − Eqλµ

)
∂µΦ (6)

χ =
1
2

(E − T ) − α

α − 3
E − 1

2
C λ

;λ (7)

where T = qµνTµν and Ω = qµν∂µΦ ∂νΦ. For more details about this formulation we
strongly suggest to read the original paper indicated in the references.
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3. Cosmology

To construct a homogeneous and isotropic geometry for the universe we impose the
scalar field will have temporal dependence only,

Φ = Φ(T ) , (8)

in the coordinate system xµ = (T, x, y, z) , where the auxiliary Minkowski metric has its
diagonal form ηµν = diag(1,−1,−1,−1) . The non-null coefficients of the gravitational
metric are

q00 = α + β, q11 = q22 = q33 = − α, (9)
where α = α(T ) and β = β(T ). Then the line element takes the form

ds2 =
1
α + β

dT2 − 1
α

(dx2 + dy2 + dz2), (10)

that can be written as,

ds2 = dt2 − a(t)2 (dx2 + dy2 + dz2), (11)

with α ≡ 1/a2 and dt = dT/
√
α + β. This line element characterizes a geometry that is

spatially homogeneous and isotropic. As occurs in GR, t is the cosmological time and
the function a(t) is the scale factor of the universe. Note that homogeneity of the scalar
field imposes isotropy in the metric which has a non curve spatial section. Therefore,
the flatness problem does not even exist in the cosmology of GSG.

Using this configuration, the left-hand side of the dynamical equation (3) for the
gravitational field becomes

√
V ✷Φ = ± a

2
(3a2 − 1)

(
ä
a
+ 2

ȧ2

a2

)
, (12)

where Ẋ = dX/dt. The ± sign appears in order to maintain the positivity of the
√

V
function, which is directly related to the determinant of the metric qµν , namely,

√−q =

√−η
α3
√

V
, (13)

Thus, the cosmological model of GSG provides two distinct solutions to describe the
evolution of the universe. When 0 ≤ 3a2 < 1 we consider the negative sign in the Eq.
(12) and, when 3a2 > 1 , we consider the positive sign. Since the first one seems to be a
not very probable scenario (limited scale factor), we will explore here only the second
solution.

The r.h.s. of the dynamical equation concerns the quantity χ which is determined
by the definitions made in the previous section,

χ = −1
2

[
T +

(
1 + 3a2

1 − 3a2

)
E + C λ

;λ

]
. (14)

Since ∂µΦ =
√
Ω δ 0

µ it follows that E = T00 and therefore

C 0 = 0 , C i =
β

α
√
Ω

T i0 . (15)
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Because the gravitational field depends only on t, it is natural to expect that all the
relevant quantities have only temporal dependence too. In principle it could be possible
that some quantities like the heat flux depend also on the spatial coordinates provided
that C i

; i is function of t alone. For the sake of simplicity we proceed here with the
hypothesis that the components of the energy-momentum tensor depends only on time.
The divergence of C λ vanishes and equation (3) reads

a(3a2 − 1)

(
ä
a
+ 2

ȧ2

a2

)
= κ

[
3p +

(
2ρ

3a2 − 1

)]
. (16)

For a barotropic perfect fluid p = λ ρ , with λ being a constant, and the conservation
of the energy-momentum tensor implies

ρ = ρ0 a−3(1+λ) , ρ0 ≡ constant . (17)

Thus, the cosmological equation becomes

a

(
ä
a
+ 2

ȧ2

a2

)
= κ ρ0

(2 − 3λ + 9λ a2)

a3(3+λ) (3a2 − 1)2 (18)

always with the condition 3a−2 > 1. This expression can be readily integrated yielding

ȧ2 =
M

a4 − 2κρ0
a−2−3λ

(3 a2 − 1)
, (19)

where M is an integration constant. As it should be expected, the above expressions
are singular at 3a2 = 1. However this value is unattainable because the square of the
velocity becomes zero at a minimal value am strictly grater than 1/

√
3. At that point the

universe bounces.
The possibility of having a bouncing for standard fluids is quite remarkable. In

FLRW cosmology the bouncing is possible either by non-minimal coupling with matter
fields or by negative pressures. In GSG the situation is different: the universe always
bounces.

3.1. Pressureless matter
Let us discuss the case of dust (λ = 0) in some detail. First, the constant M has to
satisfy the bound M > 2κρ0/3 for the universe to exist (ȧ2 > 0) . As said before, it is
easily verified that the universe bounces at the point,

am =

√
1
3

(
1 − 2κρ0

3M

)−1
, ȧm = 0 , and äm > 0 . (20)

It is possible to construct a phase diagram that shows the behaviour of the universe.
Rewriting the dynamical equation considering two independent variables, the Hubble
parameter = ȧ/a and the scale factor, we set the system of differential equations,

ȧ = H (t) a(t) , (21)

Ḣ = −3 H (t)2 + 2
a(t)4 (3 a(t)2−1)2 . (22)
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Figure 1. Phase diagram for an universe filled with pressureless matter.
We consider M = 0.9κρ0 .

Figure 1 shows that the universe starts collapsing from the infinity, reach the minimum
value of the scale factor and expands to the infinity again. Since am represents a
minimum for the scale factor, we see that dust generates an regime of accelerated
expansion for the universe.

Fluids with positive λ (including radiation) have a similar behaviour. They all have
a bounce, followed by an early accelerated phase and a final decelerated phase. The
expansion last forever. At late times, they all share the same behaviour with

a(t) ∼ t1/3 (23)

irrespective of the value of λ.

3.2. Negative pressure
When the pressure is negative, i.e. for λ < 0, there exist static cosmological solutions
of Eq. (18):

a0 =

√
1
3
− 2

9λ
>

1√
3

(24)

so that

Mλ = 3|λ |κρ0

(
1
3
+

2
9|λ |

)1+ 3
2|λ |

(25)

Note that this is the minimal possible value of the constant M relative to the equation
of state λ (below this value ȧ2 would be negative for all a). For any choice M > Mλ

there are two values where ȧ = 0. Since the acceleration is positive for a = amin and
negative for a = amax the latter are inversion points and the universe eternally oscillates
between a minimal and a maximal value of the cosmic scale factor amin ≤ a ≤ amax .

4. Conclusions

We develop a cosmological model using the new born geometric scalar theory of gravity.
Initially the theory forecasts two solutions for its dynamical equation due to the shape
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of the V function. These solutions are unconnected, in other words, one must work
with only one of them in order to describe the universe. In this sense, the non limited
solution (3a2 > 1) is the one which is more realistic and it was explored in this work.

The first results highlight several distinct behaviours of the standard FLRW cos-
mology, among which stands out the fact that the scale factor is not singular and has an
accelerated expansion phase for usual fluids like radiation or non relativistic matter.

Important to recall that GSG is newly born and its properties and solutions are
largely yet unknown. For instance, we still did not analyze completely the problem of
structures formation observed in the universe. Any alternative theory of gravity should
be able to enclose an explanation for that phenomenon. We hope that this work can at
least stimulate a regain of interest and thinking about scalar theories of gravity.
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Abstract. Since microscopic velocity diffusion can be incorporated into gen-
eral relativity in a consistent way, we study cosmological background solutions
when the diffusion phenomena takes place in an expanding universe. Our fo-
cus here relies on the nature of the diffusion coefficient σ which measures the
magnitude of such transport phenomena. We test dynamics where σ has a
phenomenological dependence on the scale factor, the matter density, the dark
energy and the expansion rate.

1. Introduction

For most of the universe lifetime its dynamics can be fairly approximated by a ho-
mogeneous, isotropic and expanding sphere whose energy content is dominated by
pressureless matter. The hot radiative (Big Bang) primordial universe cools down
quickly until the radiation energy drops to the same level as the matter energy density.
This happens very soon, when the universe is only ∼ 50 kyrs old. During the following
10 Gyrs the total universe cosmic energy budget is well approximated by a pressureless
matter fluid. This is the matter dominated epoch where most of the main astrophysical
effects take place, such as the formation of stars, galaxies and clusters of galaxies.
The matter component can be divided into two distinct contributions: the first one is
the expected baryonic sector which contains the known heavy particles of the standard
particle model. The second contribution comes from an unknown component called
dark matter which is at least five times more abundant than the baryonic matter and
is the building block of any successful cosmological theory. The matter domination
era is a necessary stage for the formation of structures, but it ends when the universe
is ∼ 10 Gyrs old. From this moment on, another form of energy, called dark energy,
accelerates the background expansion slowing down the agglomeration rate. The nature
of the dark energy is also still unknown. The simplest explanation for this effect relies
on the existence of a cosmological constant Λ. However, one could admit different
descriptions for the dark energy phenomena, like scalar fields, which may (Amendola
2000; Zimdahl et al. 2003; Dalal et al. 2011; Castro et al. 2012) or may not interact
with the other cosmic components.

In the standard model described above the matter dynamics is therefore described
by the relativistic Euler equation ∇µTµν = 0 on the the matter fluid energy-momentum
tensor. In particular, the fluid feels only indirectly (via the gravitational potential) the
presence of other components, e.g., photons, neutrinos and dark energy.
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If we assume fluid particles undergoing velocity diffusion in a background medium,
it was shown in Calogero (2011, 2012) that the matter dynamics can be described by
the equations

∇µ Jµ = 0, ∇µTµν = σJν . (1)

The first equation guarantees the standard conservation law for the particles cur-
rent density Jµ. This is a remarkable fact concerning the inclusion of the diffusion
mechanism into the general relativistic context. Indeed, this is also the case in the
usual Fokker-Planck equation which describes the evolution of the probability density
function of the velocity of the particles rather than their creation/annihilation rates. The
quantity σ in the second equation is the (positive) diffusion coefficient, which measures
the energy transferred to the fluid particles by the diffusion forces per unit of time.1 So
far only the case of a constant σ has been considered in the literature, see e.g. Calogero
& Velten (2013) and Shogin et al. (2013), but here the possibility that σ varies through
space-time will be considered.

Since the second relation in (1) states that, in the presence of diffusion, the matter
energy-momentum tensor is not a divergence free quantity, and having in mind Bianchi’s
identities, it is clear that the space-time geometry cannot be determined by the stan-
dard Einstein field equations of general relativity. The inconsistency with the Bianchi
identities can be circumvented by adding a cosmological scalar field φ to the Einstein
equation, which thereby becomes

Rµν − 1
2
gµνR + φgµν = Tµν, (2)

where we use physical units such that 8πG = c = 1. The scalar field φ plays the role
of the background medium in which diffusion takes place. Taking the divergence ∇µ of
both sides of eq. (2), we obtain that φ obeys

∇µφ = σJµ. (3)

In the next section we will show that after assuming a FLRW metric the resulting
cosmology is equivalent to GR having two interacting fluids. This corroborates our
claim that the diffusion mechanism can be seem as a possible physical origin for energy
exchange between cosmological fluids.

In order to avoid the need to introduce a new evolution equation for σ, and at the
same time to ensure that the value of σ is coordinates-independent, we assume that
σ = f (s), where s is a scalar invariant quantity constructed from φ, gµν, Jµ and Tµν.
The simplest choices for the scalar invariant s are

s1 = −Jµ Jµ, s2 = gµνTµν, s3 = φ. (4)

In the next section we present the basic equations for a viable cosmological model
based on the diffusion theory outlined above. This model extends the one studied in
Calogero & Velten (2013) by considering a time dependent diffusion coefficient σ.

1We take the opportunity to point out a little misprint in our article (Calogero & Velten, 2013). In the
paragraph after eq. (2.3), the sentence “The value 3σ measures the energy...” should read “The value σ
measures the energy...”.



Exploring non-linear cosmological matter diffusion coefficients 173

2. Cosmological model with variable matter diffusion

A viable cosmological model in which dark matter undergoes microscopic velocity
diffusion into a dark energy solvent field φ has been developed in Calogero (2012) and
Calogero & Velten (2013). This model is obtained from the general diffusion theory
described in the Introduction under the following assumptions: (i) the matter content is
described by a pressureless fluid, i.e., the energy-momentum tensor Tµν and the current
density Jµ are given by Tµν = ρuµuν and Jµ = nuµ , where ρ is the energy density,
n the particles number density and uµ the four-velocity field of the dust fluid; (ii) the
universe is spatially homogeneous, isotropic and flat and so in particular the space-time
metric can be written in the form

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), a0 = 1,

where a subscript 0 indicates the evaluation at time t = 0; (iii) the diffusion coefficient σ
is a positive constant. The resulting cosmological model has been called φCDM model
in Calogero & Velten (2013) and is described by the following system on the standard
normalized energy densities

dΩm(z)
dz

− 3Ωm(z)
1 + z

= −σ̃ (1 + z)2

E(z)
, (5)

dΩφ (z)

dz
= σ̃

(1 + z)2

E(z)
, (6)

H (z)
H0
= E(z) =

√
Ωm(z) +Ωφ (z), (7)

with z = a−1 − 1 and σ̃ = σn0
3H3

0
.

For σ̃ = 0 the φ field remains constant in time and the solution is given by the
ΛCDM model:

Ω(0)
m (z) = Ω(0)

m0(1 + z)3, Ω(0)
φ (z) = Ω(0)

φ0 = 1 −Ω(0)
m0.

Equations (5) and (6) denote a coupled system where energy flows from the matter to
the dark energy field. The direction of the flux is due to the fact that σ̃ > 0. Interacting
models play an important role to alleviate the cosmic coincidence problem, i.e., the
fact that only today the dark matter and dark energy densities are of the same order of
magnitude. Usually the interaction term in the right hand side of equations (5) and (6) is
incorporated in a ad hoc way. Therefore, the diffusion mechanism appears as a genuine
physical mechanism responsible for the interaction on the dark sector.

In the rest of the paper we assume that σ̃ in the equations above is time-dependent.
We will employ the following phenomenological choices

σ̃(n) ≡ σ̃0ak, σ̃(ρ) ≡ σ̃0

(
Ωm

Ωm0

)λ
, σ̃(φ) ≡ σ̃0

(
Ωφ

Ωφ0

)δ
, σ̃(H ) ≡ σ̃0

(
H
H0

)h
.

We remark that, since for the model under discussion the scalar invariants s1, s2 in (4)
are given by s1 = n0 (1 + z)3, and s2 = −ρ = H0Ωm(z), the choices σ̃(n) , σ̃(ρ) and σ̃(φ)
correspond respectively to a diffusion coefficient that is a power of the scalar invariants
s1 = n2, s2 = −ρ, s3 = φ to which (4) reduce in the dust fluid case.
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Figure 1. Evolution of the Hubble expansion -H(z)- for the different choices
of time dependent diffusion coefficient. The four panels represent the cases:
Top left (σ̃(n)), top right (σ̃(ρ) , bottom left (σ̃(φ)) and bottom right (σ̃(H )).

3. Cosmological background dynamics

Let us investigate now how the different options for the coefficient σ affect the back-
ground dynamics of the cosmological model.

In our analysis we will fix the reference values Ωm0 = 0.3 (ΩΛ = Ωφ0 = 0.7) and
H0 = 70 km/s−1Mpc−1. Moreover the today magnitude of the diffusion coefficient will
be fixed at σ̃0 = 0.1. Although background observational data can be described by this
value, the structure formation process is severely affected by the diffusion mechanism.
The analysis using the matter power spectrum data imposes the upper bound σ̃0 < 0.01
(Calogero & Velten, 2013). However, we will keep the reference value σ̃0 = 0.1 as
a guide since here we are mostly concerned with the background expansion. Indeed,
depending on the value of k, λ, δ and h, the resulting diffusive dynamics becomes closer
to the ΛCDM model, thus allowing for larger values of σ̃0.
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The results of our analysis are contained in Figs. 1 and 2, where we plot respectively
the Hubble function and the fractionary densities corresponding to the different choices
of the time dependent diffusion coefficient σ. In each plot the dynamical quantities for
the ΛCDM model are shown with solid lines. The case of a constant σ̃ = σ̃0 has been
already shown in Calogero & Velten (2013). The observational data points displayed
in Fig. 1 are based on a technique which uses the differential age of old red galaxies.
They were compiled in Farooq et al. (2013). The main conclusion that can be drawn
from the pictures is that the diffusion dynamics can be made arbitrarily close to those
of the ΛCDM model by choosing the exponent k positive and large, or the exponents
λ, δ, h negative and with large absolute value.
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Figure 2. Evolution of the fractionary density parameters for the different
choices of time dependent diffusion coefficient. The four panels represent the
cases: Top left (σ̃(n)), top right (σ̃(ρ) , bottom left (σ̃(φ)) and bottom right
(σ̃(H )).
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4. Conclusions

We have investigated the background evolution for a cosmological model where the
matter component undergoes microscopic velocity diffusion into the dark energy field,
which acts as the diffusion solvent. Previously, the case of a constant diffusion coefficient
σ = const was studied (Calogero & Velten, 2013). In this contribution we consider
different temporal dependences for the diffusion coefficient, which derive by postulating
a power-law dependence of σ on the other dynamical variables of the model.

Our main result can be stated in the following way: by a proper choice of the
exponent in the power-law, the dynamics of the diffusion model can be made arbitrarily
close to those of the ΛCDM expansion. In some sense, this means that even for “high”
values for the magnitude of the today’s diffusion coefficient σ̃0, such as σ̃0 = 0.1, an
appropriate time dependence can alleviate the diffusion effects on the cosmic background
dynamics. In any case, following the results of Calogero & Velten (2013), it is mandatory
a study making use of the cosmological perturbation theory. The cosmic matter diffusion
is very sensitive to this analysis and the most strong constraints come from the structure
formation process. We hope to deal with this issue in a future communication.
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organizers of the II GRACO held in Buenos Aires.

References

Amendola, L. 2000, Phys. Rev., D62, 043511
Calogero, S. 2011, JCAP, 11, 016
Calogero, S. 2012, J. Geom. Phys., 62, 2208
Calogero, S. & Velten, H. 2013, JCAP, 11, 025
Castro D. R., Velten, H. & Zimdahl, W. 2012, JCAP, 06, 024
Dalal N., Abazajian, K., Jenkins, E. & Manohar, A. V. 2011, Phys. Rev. Lett., 86, 1939
Farooq. O., Mania. D. & Ratra, B. 2013, Astrop. J., 764, 138
Shogin, D. & Hervik, S. 2013, JCAP, 10, 005
Zimdahl, W. & Pavón, D. 2003, Gen. Rel. Grav., 35, 413



Gravitation, Relativistic Astrophysics and Cosmology
Second Argentinian-Brazilian Meeting, 2014
G. S. Vila, F. L. Vieyro and J. Fabris, eds.

Proton loading of jets and other consequences of the injection of
neutrons in accretion flows

Gabriela S. Vila,1 Florencia L. Vieyro,1 and Gustavo E. Romero1,2

1Instituto Argentino de Radioastronomía, C.C. 5, (1894) Villa Elisa, Buenos
Aires, Argentina
2Facultad de Cs. Astronómicas y Geofísicas, Universidad Nacional de La
Plata, Paseo del Bosque S/N, (1900) La Plata, Buenos Aires, Argentina

Abstract. Relativistic neutrons are injected in the corona surrounding an ac-
creting black hole through hadronic interactions of locally accelerated protons.
If the source is a microquasar, a fraction of these neutrons may escape and pene-
trate the base of the jet. The neutrons will decay into protons inside the outflow,
this being then a possible mechanism for loading Poynting-dominated jets with
baryons. We study the characteristics of the proton distribution injected in this
way and the consequences on the high-energy radiative spectrum of the jet. We
also investigate the fate of those neutrons that escape the corona into the external
medium.

1. Introduction

The composition of relativistic jets is an open issue. All relativistic jets emit synchrotron
radiation at radio wavelengths. The characteristics of the radio spectrum give very strong
evidence in favour of the presence of accelerated electrons (or electron-positron pairs)
with a non-thermal distribution. The radiative output from protons may be largely
unimportant unless they are accelerated to very high energies and find suitable targets
to interact, such as a dense matter field or an intense magnetic field.1 Currently,
observational evidence of a baryonic component exists only for two accreting black
holes: the galactic microquasars SS 433 and 4U1630-47 (Migliari et al. 2002, Díaz
Trigo et al. 2013). The X-ray spectra of these objects show blueshifted iron lines. The
inferred velocity of the iron nuclei (∼ 0.3 − 0.4c) is consistent with the interpretation
that they are traveling with the jets.

The question of composition is relevant because it is expected to be related to
the launching mechanism of the outflows. Jets launched through the Blandford-Znajek
process (e.g. Blandford & Znajek 1977) or similar (i.e. powered by the rotational energy
of the black hole) are basically a Poynting flux plus electron-positron pairs created in
situ. If, on the other hand, the outflows are launched and fed with matter from the
accretion disk as a collimated wind (e.g. Blandford & Payne 1982), they should contain
as well protons and other nuclei.

The launching mechanism, however, is definitively not the only factor that deter-
mines the composition of jets. Black hole-driven jets may get loaded with baryons by

1See for example Romero et al. (2003) and Vila et al. (2012) for models of hadronic emission of jets in
microquasars.
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entrainment with the matter in the medium they traverse – the outflows from the outer
accretion disk or the wind of a companion star in a high-mass microquasar, for example.

In low-luminosity active galactic nuclei (AGN) and X-ray binaries (XRBs), obser-
vations support the existence of an advection-dominated and radiatively inefficient hot
cloud of plasma around the compact object. This “corona” is usually modeled as a two-
temperature ion-electron thermal plasma, sometimes with the addition of a population
of non-thermal electrons or electron-positron pairs, see e.g. Vurm & Poutanen (2009).
Compton up-scattering of disk photons by the electrons in the corona is the classical
explanation for the origin of the power-law hard X-ray spectrum observed during the
low-hard state of XRBs.2 Recently, Romero et al. (2010), Vieyro et al. (2012) and
Vieyro & Romero (2012) developed a radiative model for magnetized coronae in black
hole XRBs that includes relativistic protons. They applied the model to Cygnus X-1,
successfully reproducing the MeV emission detected by COMPTEL and INTEGRAL
(McConnell et al. 2000, Cadolle Bell et al. 2006, Jourdain et al. 2012).

Relativistic protons in the corona produce gamma rays through the decay of neutral
pions created in inelastic collisions with thermal protons. In about a half of the pp
collisions the proton turns into a neutron. The conditions in the corona are such that the
neutrons escape virtually without interacting and propagate for long distances until they
decay. A fraction of these neutrons will enter the jets (if they exist) and decay there,
injecting a proton and an electron that will get trapped by the local magnetic field and
advected with the outflows. This is, then, another possible mechanism to load jets with
protons.

The production and escape of neutrons from the central regions in AGN has been
studied before by several authors, see e.g. Sikora et al. (1989), Bednarek (1992),
Atoyan & Dermer (2003), and Toma & Takahara (2012). Here, we study the injection of
neutrons in the magnetized corona of a microquasar through interactions of non-thermal
protons with matter and radiation. We show that the neutrons escape the corona almost
freely, and calculate their distribution in energy and space outside the source. We also
compute the local spectrum of the protons and electrons injected where the neutrons
decay. For those protons injected inside the jets, we estimate their high-energy emission
by the interaction with a dense clump in the wind of the companion star. Finally,
we discuss the characteristics of the radiation from the electrons injected far from the
corona.

2. Corona model

We apply the corona model developed by Romero et al. (2010), Vieyro et al. (2012)
and Vieyro & Romero (2012). The reader is referred to those works for a detailed
description of the model, here we only comment briefly on its most important aspects.

We assume the corona to be homogeneous and spherical, with a radius of Rc =
35Rgrav (the mass of the black hole is 15M⊙, as in Cygnus X-1). The bolometric
luminosity of the corona is Lc = 0.01LEdd ≈ 1037 erg s−1. The mean number density
of thermal protons and electrons in the corona is np,e ≈ 1013 cm−3. The hypothesis of

2This emission may as well be synchrotron radiation from electrons in the jets, see Vila & Romero (2009)
and Vila et al. (2012).



Proton loading of jets 179

equipartition between the energy density of thermal particles and the magnetic energy
density, yields a mean magnetic field strength Bc ≈ 105 G.

Relativistic protons are injected in the corona with a power-law energy spectrum
Qp ∝ E−2.2

p [erg−1 cm−3]. This is consistent with a diffusive acceleration mechanism,
that in the corona may operate at sites of fast magnetic reconnection (de Gouveia dal Pino
& Lazarian 2005, but see also Drury 2012). The steady-state distribution of relativistic
protons Np (Ep) [erg−1 cm−3] is calculated solving a system of kinetic equations that
couple the behaviour of protons, electrons, and photons in the corona. The equation
for each particle species includes terms that account for injection, energy losses, and
escape.

The relativistic protons in the corona cool as they interact with the thermal protons,
the non-thermal radiation emitted by the relativistic electrons, the blackbody photons
from the accretion disk, and the Comptonized disk photons. The latter is the most
relevant radiation field, that we parametrize as a power-law with a cutoff of the form
nph ∝ E−βph exp

(
−Eph/E0

)
with β = 1.6 and E0 = 150 keV.

The main channels of proton-proton (pp) and proton-photon (pγ) collisions that
produce neutrons are

p + p→ p + n + π+ + aπ0 + b(π+ + π ) ,

p + p→ n + n + 2π+ + aπ0 + b(π+ + π ) ,

p + γ → n + π+ + aπ0 + b(π+ + π ),

(1)

where the integers a, b are the pion multiplicities. To calculate the neutron injection
functions we adopt the parameterizations given by Sikora (1989), Atoyan (1992), and
Atoyan & Dermer (2003).

3. Results

The left panel of Figure 1 shows the injection rates of neutrons created in pp and
pγ interactions, as a function of energy. The total power injected in neutrons inside
the corona is Ln ≈ 6 × 1035 erg s−1. The cooling rates for neutrons by collisions with
protons and photons, the decay rate, and the inverse of the corona crossing time are
plotted in the right panel of Figure 1. The escape time is the shortest for all energies
considered, so we make the approximation that all neutrons leave the corona before
decaying without losing energy.

The steady-state distribution of neutrons in energy and space outside the corona,
may be written as Nn (En, r) ∝ r−2 exp (−r/rτ ), where τ(En) and vn (En) are the mean
lifetime and the velocity of the neutrons, respectively, and rτ = τnvn. The coordinate r is
the radial distance to the center of the corona. Each neutron injects a proton, an electron,
and an electron antineutrino at decay, n → p + e− + ν̄e. The proton carries ∼ 99.9%
of the energy of the neutron, so the proton injection function is well approximated as
Qn→p

p (Ep, r) ≈ Nn (En, r)/τ(En ) with Ep = 0.999En . To calculate the injection rate of
electrons we followed Abraham et al. (1966). The results are shown in Figure 2. The
total power injected in protons is ∼ 1035 erg s−1 whereas the power in electrons is ∼ 1030

erg s−1. Most of these particles are created within r ≈ 1012−13 cm, a region whose size
is of the order of the size of the binary system.



180 G. S. Vila et al.

9 10 11 12 13 14 15 16

-2

0

2

4

6

8

10

12

14

16

18

 

 

Lo
g(

Q
n / 

er
g-1

s-1
cm

-3
)

Log(E
n
/eV)

 Qtot
n

 pp>n
 p ->n

9 10 11 12 13 14 15 16
-8

-6

-4

-2

0

2

4

6

8

 

 

Lo
g 

(t-1
 / 

s-1
)

Log (En / eV)

 np
 n

 t
-1
cross

 Decay rate

Figure 1. Left: injection rate of neutrons as a function on energy inside.
Right: cooling, escape, and decay rates of neutrons in the corona.

To estimate the fraction of neutrons that decay inside the jets, we assumed that
these are launched at a distance 50Rgrav from the black hole, and that they are conical
with a half opening angle ∼ 6◦. For this choice of geometry, the decay of neutrons
along the jets (up to r ∼ 1012 cm) injects a total power ∼ 1034 erg s−1 in protons. Notice
that these protons are non-thermal: their energy distribution mimics that of the parent
neutrons, that in turn depends on that of the relativistic protons in the corona.
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Figure 2. Left: injection spectrum of protons by decay of neutrons as a
function of energy and distance to the black hole. Right: the same but for
electrons.

If the companion star is a massive, young star with strong winds, the clumps in the
wind may penetrate the jet. These clumps are dense and therefore suitable targets for the
relativistic protons in the jets, producing gamma rays by decay of neutral pions decays
from pp collisions (Araudo et al. 2009). Applying the model of Romero & Vila (2008)
and Vila et al. (2012) to characterize the jets, we estimate the gamma-ray spectrum
for different combinations of size, density, and location of the clump. The results are
shown in Fig. 3.

Much less power is injected in electrons than in protons. Electrons, however, cool
very efficiently. Those injected within the binary system will interact with the magnetic
field and the radiation field of the companion star. For a massive star, typical values
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Figure 3. Gamma-ray emission from pp collisions in a jet-clump interac-
tion, for different values of the clump radius Rcl and distance to the black
hole rcl. The density of the clump is ncl = 1012 cm−3, except for the black
symbol-line curve where ncl = 1013 cm−3.

of magnetic field and temperature at the surface are B⋆ ∼ 100 G and T∗ ∼ 104 K.
Under these conditions the cooling times of electrons are very long, so they will diffuse
far from their injection site before losing an appreciable fraction of their energy. The
calculation of the radiative spectrum of the electrons and of the morphology of the
emission region must be carried out accounting for propagation effects as in Bosch-
Ramon & Khangulyan (2011). For the electron energies and magnetic fields considered
here, the formation of a radio synchrotron nebula at ∼GHz frequencies may be expected.
If electrons cool predominantly through this channel, the nebula should be detectable at
the level of the mJy at 1 GHz for a source at ∼ 2 kpc.

4. Summary and perspectives

We have studied the production of neutrons in the corona of an accreting stellar-mass
black hole. The decay of these neutrons inside the jets - if present - is a way of loading
them with baryons irrespective of the launching mechanism. These protons are energetic
and have a non-thermal distribution; they may produce gamma rays by interaction with
a dense matter target such as a clump from the wind of the companion star. Although
according to our results the power in protons is low, the added contribution of several
quasi-simultaneous jet-clump interactions may give rise to weak flaring emission at GeV
energies, such as that recently observed in Cygnus X-1 by Bodaghee et al. (2013). The
cooling of electrons injected outside the corona should create a detectable radio nebula
at scales of the size of the binary system. The detailed structure of the nebula will be
addressed elsewhere.
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Abstract. We show that Kerr geometry admits a tetrad where the scalar torsion
vanishes. This result implies that Kerr spacetime is also a solution for a wide
family of f (T ) theories.

1. Introduction

Many models of modified gravity have been proposed in order to tackle the shortcomings
of general relativity (Capozziello & Faraoni, 2011). Firstly, deformations at large scales
could provide a geometric explanation to the phenomena (hypothetically) caused by
dark matter and dark energy. Secondly, deformations at small scales could smooth
or avoid the undesired singularities either at the primordial era or inside black holes.
Thirdly, the elusive question about the theory of quantum gravity could be enlightening
by a new perspective of gravity. Recently, a different approach to modified gravity
was introduced in the framework of the teleparallelism (see Ferraro & Fiorini 2007 as
seminal paper and Ferraro 2012 as a compact review).

1.1. Teleparallel theory
Gravity can be studied in the framework of teleparallelism (Einstein, 1928, 1930a,
1930b), where the dynamical variable is not the metric tensor but the tetrad or vierbein
{ea (x)} (a field of bases in the tangent space). The tetrad is linked to the metric by
means of the condition of orthonormality ηab = ea · eb (ηab is the Minkowski metric):

ηab = gµν eµa eνb or ηab = gµν eaµ ebν , (1)

where eµa and eaµ are the components of the tetrad and the dual basis, respectively. The
teleparallel equivalent of general relativity (TEGR) is governed by the action (Hayashi
& Shirafuji (1979), Arcos & Pereira (2004))

S =
1
2κ

∫
d4x e T, (2)

where κ = 8πG, e = det[eaµ] = √−g and T is the so-called scalar torsion, an invariant
which is quadratic in the Weitzenböck torsion Tµ

νρ = eµa (∂νeaρ−∂ρeaν ). The equivalence
between this theory and general relativity comes from the fact that T relates to the Levi-
Civita scalar curvature R through a 4-divergence:

T = −R + 2 e−1 ∂ρ(e T µρ
µ ). (3)
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1.2. Modified teleparallel gravity
A f (T ) theory is a deformation of the TEGR where the Lagrangian e T is replaced
for e f (T ) (Ferraro & Fiorini, 2007). This procedure mimics the one of f (R) theories
for modified general relativity (Buchdahl, 1970). The dynamical equations of a f (T )
theory are

−2 κ eλa T ν
λ = 4 e−1 ∂µ[e f ′(T ) S µν

a ] + 4 f ′(T ) eλa Tρ
µλ S µν

ρ − f (T ) eνa , (4)

where T ν
λ is the energy-momentum tensor (assuming that matter is coupled to the metric

in the usual way) and

2 S µν
ρ =

1
2

(T µν
ρ − Tµν

ρ + Tνµ
ρ) + T λµ

λ δνρ − T λν
λ δ

µ
ρ = 2 eaρ S µν

a , (5)

being T = S µν
ρ Tρ

µν the Weitzenböck scalar torsion.
A remarkable advantage of f (T ) theories over f (R) theories and other modified

theories of gravity is the fact that the dynamical equations remain second order. For
instance, f (R) theories display fourth order equations, which can be converted to second
order by introducing an auxiliar scalar field carrying the information of a new degree of
freedom not contained in general relativity. f (T ) theories come also with new degrees
of freedom because the tetrad involves more dynamical variables than the metric. At the
level of the teleparallel equivalent, the excess of variables is compensated by an excess
of local symmetry: the TEGR action is not only invariant under general changes of
coordinates but under local Lorentz transformations of tetrads. This extra local Lorentz
invariance in the tangent space means that the tetrad contains no more information
than the metric. In fact, the metric gµν = ηab eaµ ebν does not change under local
Lorentz transformations of tetrads. This extra local Lorentz invariance is not inherited
by f (T ) theories, given that the variation of T under local Lorentz transformations is a
4-divergence. This is a harmless boundary term in the TEGR, but it is a relevant change
in f (T ) gravity because it remains encapsulated inside the argument of the function f ,
so spoiling the local Lorentz invariance. As a consequence, f (T ) theories have extra
degrees of freedom. This was also shown in Li et al. (2011) through a Hamiltonian
formalism.

2. TEGR vacuum solutions remaining valid in f (T ) theories

Since modified teleparallel theories of gravity are non-local Lorentz invariant, finding
the appropriate tetrad solution could be a very complicated task, even for highly sym-
metric geometries. A naively chosen tetrad for the searched symmetry could fail to be
the solution of equation (4) because it is separated from the real solution by a local
Lorentz transformation dictated by the symmetry itself. In some cases it can be proved
that a given geometry that solves Einstein equations remains as a solution for f (T )
theories for a proper (non-naive) tetrad. In Ferraro & Fiorini (2011) it was shown that
this is the case for Schwarzschild geometry. The argument is actually very simple: any
vacuum TEGR solution with vanishing T also solves the equations of motion of f (T )
gravity with f sufficiently smooth. In fact, equation (4) becomes

0 = 4 e−1∂µ (e S µν
a ) + 4 eλa Tρ

µλ S µν
ρ − eνa

f (0)
f ′(0)

, (6)
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which is a TEGR vacuum equation with cosmological constant 2Λ = f (0)/ f ′(0). In
this section we will exploit this result to prove that Kerr geometry remains as a vacuum
solution for f (T ) theories of gravity.

2.1. Null tetrads approach
A given metric can be written with the help of a null tetrad as

g = n ⊗ l + l ⊗ n −m ⊗ m −m ⊗m, (7)

where {na} = {l, n,m,m} is a field of bases in the co-tangent space satisfying

l · l = 0 = n · n , m ·m = 0 = m ·m
l · n = 1 = −m ·m , l ·m = 0 = n ·m . (8)

Notice that these relations do not completely define the null tetrad since l and n can be
replaced for

l −→ eλ(x) l , n −→ e−λ(x) n . (9)
Moreover, any null tetrad can be associated with an orthonormal tetrad,

e0 =
l + n√

2
, e1 =

l − n√
2
, e2 =

m +m
i
√

2
, e3 =

m −m
i
√

2
, (10)

and vice-versa. The transformation (9) is equivalent to a Lorentz transformation of
tetrad (10) with parameter γ(x) = cosh λ(x).

Now, we state the strategy we will follow: given a tetrad coming from a TEGR
vacuum solution, we will apply the transformation (9) to look for a new tetrad having
T = 0 (the geometry is kept unchanged!). Provided such a new tetrad exists, then
we will assert that this tetrad is a solution even for f (T ) theories with f sufficiently
well behaved. Remarkably, Weitzenböck torsion Tµ

νρ remains unchanged under global
linear transformations of the tetrad; therefore, we can directly use the null tetrad in the
computation.

2.2. Kerr geometry
Kerr geometry can be expressed in the way given by equation (7) with the help of the
null tetrad

nbµ =
1√
2

*....,

1 − 2Mr
r2+a2c2θ

1 + 2Mr
r2+a2c2θ

0 a s2θ
(
1 + 2Mr

r2+a2c2θ

)

1 −1 0 −a s2θ
0 0 r + ia cθ i sθ (r + ia cθ)
0 0 r − ia cθ −i sθ (r − ia cθ)

+////-
, (11)

where a is the angular momentum per unit of mass. Notice that cθ and sθ are shorthands
for cos θ and sin θ. Coordinates xµ = (t, r, θ, φ) in equation (11) are not the familiar
Boyer-Lindquist coordinates xµ = (̃t, r, θ, ϕ) but they relate in a simple way:

dϕ = dφ +
a

r2 + a2 − 2Mr
dr , dt̃ = dt +

2Mr

r2 + a2 − 2Mr
dr . (12)

Matrix (11) contains the covector l in the first row, n in the second row, etc. So, we
perform the transformation (9) by multiplying and dividing the first and second rows,
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respectively, by the factor eλ(x) . Then, we search for a function λ(t, r, θ) making zero
the scalar torsion; we obtain

λ(t, r, θ) =
t + r

2
*.,

r − 3 a2 cos2 θ
r − 4 a2M cos2 θ

r2+a2 cos2 θ

r2 + a2 cos2 θ

+/- . (13)

According to the previous argument, the null tetrad already found and its associated
orthonormal tetrad, solve the dynamics of any f (T ) theory, provided that f (0) = 0,
f ′(0) , 0.

3. Summary

Although theories of modified gravity are expected to remove or smooth singularities,
we show that Kerr geometry is not deformable by a f (T ) theory having f (0) = 0,
f ′(0) , 0. We have achieved this goal by showing that the TEGR admits a solution for
Kerr geometry with vanishing scalar torsion T . This property implies that such a tetrad
remains a solution for a family of smooth deformations of the TEGR, typically those
theories like f (T ) = T + O (T2).
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Abstract. Strong magnetic fields of magnitudes up to 1014 G are suppose to
exists at the surface of pulsars, which are highly magnetized neutron stars. The
strength of magnetic field in the center of a neutron star remains unknown.
According to the scalar virial theorem, magnetic field in the core could be as
large as 1018 G. Direct Urca process is an extremely efficient mechanism for
cooling a proton neutron star after its formation. In this work we study the
influence of strong magnetic fields on the cooling of neutron stars coming from
direct Urca process. We calculate numerically the emissivity of neutrinos and
the cooling for different magnetic fields due to the direct Urca process, and
compare the results for the case without magnetic field.

1. Introduction

The matter at high densities is described using a relativistic mean field (MF) theory and
the Lagrangian that describes this model, with a uniform magnetic field B along the z
axis, is given by (Glendenning 1997)

L =
∑

b

ψ̄b[iγµDµ − mb + gσbσ − gωbγµω
µ − 1

2
gρbγµτ · ρµ]ψb +

1
2
∂µσ∂

µσ

− 1
2

m2
σσ

2 −U (σ) − 1
4
ωµνω

µν +
1
2

m2
ωωµω

µ − 1
4
ρµν · ρµν +

1
2

m2
ρρµ · ρµ

+
∑

l=e−, µ−
ψ̄l[iγµ (∂µ + iql A

µ) − ml]ψl − 1
4

FµνFµν, (1)

where Dµ = ∂µ + iqb Aµ, A0 = 0, ~A = (0, xB, 0), qb and ql are the electric charge
of baryons and leptons, ψb is the Dirac spinor for baryon b in the octet {n, p,Λ,Σ,Ξ}
with mass mb; mσ, mω, mρ and gσb, gωb, gρb are the masses and coupling constants
of mesons σ,ω, ρ respectively. The mesonic and electromagnetic field strength tensors
are ωµν = ∂µων − ∂νωµ, ρµν = ∂µρν − ∂ν ρµ and Fµν = ∂µAν − ∂νAµ. The Lagrangian
of leptons (electrons and muons) is written in the third line while the scalar self-
interactions term is U (σ) = 1

3 b mn (gσnσ)3 + 1
4 c(gσnσ)4, where b and c are constants.

The dynamic equations of nucleon and mesons are obtained from the Euler-Lagrange
equations ∂L

∂φ(x) − ∂µ ∂L
∂(∂µφ) = 0, where φ(x) is the corresponding field. The resulting
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equations of motion in the mean field approximation are given by

gωnω0 =

(
gωn

mω

)2 ∑

b

χωbρb, gρnρ03 =

(
gρn

mρ

)2 ∑

b

χρb I3b ρb, (2)

m∗n = mn +

(
gσn

mσn

)2
[b mn (mn − m∗n)2 + c(mn − m∗n)3 −

∑

b

χσbns], (3)

where I3b is the 3-component of the isospin of the baryon b, m∗n = mn − χσbgσnσ,
χσb = gσb/gσn, χωb = gωb/gωn, χρb = gρb/gρn; the scalar density is ns = nqb = 0

s +

nqb , 0
s , with

nqb = 0
s =

m∗
b

2π2

[
µ∗bkb − m∗2b ln

(
µ∗
b
+ kb

m∗
b

)]
, nqb , 0

s =
m∗

b
|qb |B

2π2

νmax(b)∑

ν=0
gν ln


µ∗
b
+ kb,νb

m∗
b,νb


(4)

where m∗2
b, νb

= m∗2
b
+ 2νb |qb |B, ν is the Landau principal quantum number and the

Landau level degeneracy gν is 1 for ν = 0 and 2 for ν > 0. The effective chemical
potentials of baryons are µ∗

b
= µb − χωbgωnω0 − χρbgρnI3b ρ03. They are constrained

due to the β-equilibrium condition, which reads µb = µn−qb µe− , µe− = µµ− , where µn,
µe− and µµ− are the chemical potentials of neutron, electron and muon respectively. The

number density of baryons and leptons is ρqb=0
b

=
k3
b

3π2 , ρqb,0
b

=
|qb |B
2π2

∑νmax(b)

ν=0 gνkb, νb ,
ρl =

|ql |B
2π2

∑νmax(l)

ν=0 gνkl,νl , where kb and kb,νb = (µ∗2
b
−m∗2

b
−2νb |qb |B)1/2 are the Fermi

momentum of neutral and charge baryons respectively, kl,νl = (u2
l
− m2

l
− 2νl |ql |B)1/2

is the Fermi momentum of leptons. The upper limits νmax(b) and νmax(l) are defined by
the conditions k2

b,νb
≥ 0 and k2

l,νl
≥ 0. Neutron star matter satisfies the constraints of

conservation of baryon number and neutrality of electric charge, which reads

ρ =
∑

b

ρb, 0 =
∑

b

qb ρb +
∑

l=e−, µ−
ql ρl . (5)

The energy density due to the matter is given by (Chakrabarty, Bandyopadhyay & Pal
1997)

εm =
1
3

b mn(gσnσ)3 +
1
4

c (gσnσ)4 +
1
2

(
mσn

gσn

)2
(gσnσ)2 +

1
2

(
mωn

gωn

)2
(gωnω0)2

+
1
2

(
mρn

gρn

)2
(gρn ρ03)2 +

∑

b(q=0)

1
8π2 [2µ∗b

3kb − m∗b
2µ∗bkb − m∗b

4

× ln
{
µ∗
b
+ kb

m∗
b

}]
+
|q |B
4π2

∑

b(q,0)

νmax(b)∑

νb=0
gν[µ∗bkb, νb + m∗2b, νb ln


µ∗
b
+ kb, νb

m∗
b, νb




+
|q |B
4π2

∑

l=e−, µ−

νmax(l)∑

νl=0
gν[µl kl, νl + m2

l, νl
ln

{
µl + kl, νl

ml, νl

}]
, (6)

where m2
l, νl
= m2

l
+ 2νl |ql |B. The matter pressure is given by Pm = µnρb − εm. Next,

we add to these the contribution from electromagnetic field tensor, obtaining the total
energy density and pressure as ε = εm + B2/2, P = Pm + B2/2.



Emissivity of neutrinos and cooling of neutron stars 191

The system of coupled nonlinear equations (2-3) with constraints (5) is solved
numerically by iteration. The coupling constants are given in Chiapparini et al. (2009).
Figure 1 shows relative population of each specie of particles as a function of the
baryon density for the cases without and with a strong magnetic field (1.0 × 1019 G for
illustration). It can be seen that the incorporation of strong magnetic field increases the
proton and electron fraction.
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Figure 1. The particle fractions in cold β-equilibrated neutron star without
and with magnetic field.

The direct Urca process is the most powerful mechanism of neutrino emission in
the core of neutron stars. The reaction is given by n → p + e− + ν̄e− , p + e− → n + νe−.
This process may occur if the proton fraction is large enough (kFn ≤ kFp + kFe, where
kFα = (3π2ρα)1/3), in order to conserve momentum in the reaction. The emissivity
due to the antineutrino emission process in the presence of a uniform magnetic field B
strong enough that only the ground Landau level is occupied is (Bandyopadhyay et al.
1998)

ǫν = 2
∫

V d3k1

(2π)3

∫
V d3k2

(2π)3

∫ qBLx/2

−qBLx/2

Lydk3y

2π

∫
Lzdk3z

2π

∫ qBLx/2

−qBLx/2

Lydk4y

2π

×
∫

Lzdk4z
2π

E2W f i f1 [1 − f3][1 − f4], (7)

where the pre-factor 2 takes into account the neutron spin degeneracy and the f i’s
are the Fermi-Dirac distribution functions. By the Fermi’s golden rule, the transition
rate per unity volume is W f i = 〈|Mf i |2〉/tV , where t is the time, V = VxVyVz is
the normalization volume and the matrix element for the V-A interaction is Mf i =
GF√

2

∫
d4X ψ̄1(X )γµ(gV − gAγ5)ψ3(X )ψ̄2(X )γµ(1 − γ5)ψ4(X ), where 〈.〉 denotes an

averaging over the initial spin of n and a sum over spins of final particles (p, e−); gV
and gA are vector and axial-vector coupling constants and the indices i = 1 − 4 refer
to the n, νe−, p and e−, respectively. The wave functions for neutron and neutrino are
plane wave functions and the wave functions for both protons and electron are given by
Kobayashi & Sakamoto (1983). Then, the emissivity is

ǫν =
457π
5040

G2
F cos2 θc (qbB)

[
(gV + gA)2

(
1 − kF3

µ∗3

)
+ (gV − gA)2

(
1 − kF1

µ∗n
cos θ14

)
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−(g2
V − g2

A)
m∗2

µ∗3µ
∗
1

]
exp


(kF3 + kF4 )2 − k2

F1

2eB


µ∗1µ

∗
3µ4

kF3 kF4

T6Θ,

where cos θ14 = (k2
F1
+ k2

F4
− k2

F3
)/2kF1 kF4 , and the threshold factor is Θ = θ (kF3 +

kF4 − kF1 ), with θ (x) = 1 (x > 0), θ (x) = 0 (otherwise) and T is the temperature, kFi

is the Fermi momentum.

2. Results

Figure 2 shows the cooling due to the direct Urca process of neutron stars with 1.4 and 1.6
solar masses (continuous and dashed lines, respectively) for the cases B = 0 (blue line)
and B(ρ/ρ0) = Bsur f + B0[1 − exp{−β(ρ/ρ0)γ}] (red line), where Bsur f = 108G and
B0 = 1019G are the magnetic fields at the surface and the center of the star respectively,
with the parameters β = 10−4 and γ = 17, and ρ0 is the saturation density. We can
see that the cooling is more intense with the increase in the mass of the star and for
the case B(ρ/ρ0). Theses differences may be attributed to the increase of proton and
electron fractions with the mass and magnetic field of the star and to the phase space
modifications.
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Figure 2. Cooling of a neutron star mass with 1.4 and 1.6 solar masses
(continuous and dashed lines, respectively) for the cases B = 0 (blue line) and
B(ρ/ρ0) = Bsur f + B0[1 − exp{−β(ρ/ρ0)γ}] (red line).
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Abstract. We aim to compare two tests, cosmological model-independent, for
the cosmic distance-duality relation (CDDR), η (z) = DL (z)(1+ z)−2/DA(z) =
1 where DL and DA are, respectively, the luminosity and angular diameter
distances. The first test uses angular diameter distances (ADD) of two samples
of galaxy clusters obtained by combining their Sunyaev-Zel’dovich effect and
X-ray surface brightness and DL distances provided by two sub-samples of type
Ia supernovae (SNe Ia). The second one uses the general expression for X-ray
gas mass fraction, fgas , of galaxy clusters jointly with type Ia supernovae data.
In this case, were considered 38 fgas measurements and two sub-samples of
type Ia supernovae for luminosity distances. In both tests, the CDDR is tested
by assuming the η parameter as a function of the redshift parametrized by two
different ways. The results of the gas mass fraction test indicate the existence for
new physics, such as photon coupling with particles beyond the standard model
of particle physics, while the results for distance measurements test indicate
that the validity, or not, of CDDR depends on the starting physical hypotheses
describing the galaxy clusters.

1. Introduction

The so-called reciprocity relation, proved long ago by Etherington (1933), is a funda-
mental result for observational cosmology and its most useful version in the astronomical
context is defined by

DL

DA
(1 + z)−2 = 1 (1)

which relating the luminosity distance DL with the angular diameter distance DA.
This equation is completely general, valid for all cosmological models based on

Riemannian geometry, and only requires that source and observer be connected by null
geodesics in a Riemannian spacetime and that the number of photons be conserved
(Ellis, 2007).

If one is able to find cosmological sources whose intrinsic luminosities are known
(standard candles) as well as their intrinsic sizes (standard rulers), one can determine
both DL and DA and, after measuring the redshifts, test Etherington’s result above.
Although taken for granted in virtually all the analyses in cosmology, some attempts to
test the identity (1) have been discussed in the literature. Basically, one assumes that
the reciprocity relation can be a function of the redshift, namely:

DL

DA
(1 + z)−2 = η(z), (2)
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where η(z) quantifies a possible epoch-dependent departing of the standard result (η =
1).

Approaches to test the CDDR in the recent literature assume a cosmological back-
ground suggested by a set of observations and check the validity of the CDDR in the
context of some astrophysical effect. Examples of these methods are given by Bassett &
Kunz (2004), Uzan et al. (2004) and Avgoustidis et al. (2010). More recently Holanda
et al. (2011), used the validity of the CDDR in the ΛCDM framework to constrain
possible galaxy cluster morphologies, and Nesseris & Garcia-Bellido (2012) tested the
CDDR by the reconstruction of the parameter η(z) using Genetic Algorithms and BAO
data.

In this context, this work shows and compares two cosmological model-independent
tests for (1) by using SNe Ia data compilations and galaxy clusters observations, adopting
the following parametrizations:

η(z) = 1 + η0z (P1) η(z) = 1 +
η0z

(1 + z)
(P2)

2. Test 1: diameter angular distance vs SNe Ia

The first test to be considered have been proposed by Holanda et al. (2010). They
constrained the possible values of η0 by considering two samples of ADD from galaxy
clusters obtained by combining their SZE and X-ray surface brightness observations
and two sub-samples of DL chosen from Constitution data.

The first sample is formed by 25 galaxy clusters from De Filippis et al. (2005)
sample, that used an isothermal elliptical β model to describe the clusters and obtained
DA measurements by combining X-ray and SZE analysis. The second one is defined
by the 38 ADD galaxy clusters from the Bonamente et al. (2006) sample, where the
cluster plasma and dark matter distributions were analyzed assuming the hydrostatic
equilibrium model and spherical symmetry.

For the luminosity distances, were chosen two sub-samples of SNe Ia from Con-
stitution SNe Ia data whose redshifts coincide with the ones appearing in the galaxy
cluster samples.

2.1. Analysis and results
In order to estimate the η0 parameter for each sample, in both parametrizations, were
used the likelihood estimator, determined by

χ2 =

∑
z[η(z) − ηobs (z)]2

σ2
obs

(3)

where σ2
obs

are the errors associated with the observational techniques and ηobs (z) =
Dcluster

A (z)(1 + z)2/DL .
For De Filippis et al. was obtained η0 = −0.28+0.44

−0.44 ( χ2
dof
= 1.02) for P1

and η0 = −0.43+0.6
−0.6 ( χ2

dof
= 1.03) for P2, and for Bonamente et al., was obtained

η0 = −0.42+0.21
−0.21 ( χ2

dof
= 0.88) for P1 and η0 = −0.66+0.31

−0.31 ( χ2
dof
= 0.86) for P2, both

in 2σ confidence level.
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3. Test 2: gas mass fraction vs SNe Ia

The second test was proposed by Gonçalves et al. (2010). These authors showed that the
model function depends explicitly on the CDDR, differently from most of the analyses
discussed in the literature. They constrained the possible values to the parameter η0 by
using DA measurements extracted from fgas observations of galaxy clusters and DL

from current SNe Ia data.
The mentioned authors considered two samples of 38 gas mass fraction mea-

surements obtained from X-ray observations, as discussed by La Roque et al. (2006)
and Ettori et al. (2009), plus two sub-samples of the SNe Ia taken from the Union2
compilation (Amanullah et al. 2010).

The gas mass fraction is defined by fgas = Mgas/MTotal , where Mgas is the mass
of the intracluster medium gas and MTotal is the total mass including baryonic mass and
dark matter. To determine the gas mass and cluster’s total mass followed the procedure
of Sasaki (1996), which combined with the spherical β model profile (Cavaliere &
Fusco-Fermiano, 1976) provides in its more general form fgasαD1/2

A
DL .

Furthermore, the authors defined the fgas model function as

fgas = N


D∗LD∗1/2
A

DLD1/2
A

 (4)

where N is a normalization factor and D∗A (D∗L ) is the angular diameter (luminosity)
distance of the fiducial model. They considered how the fiducial model ΛCDM , in such
a way that the angular diameter distance that was used in analyses is given by

DA(z) = N2/3


D∗A
η2/3 f 2/3

gas

 (5)

It is worth mentioning that La Roque et al. (2006) and Ettori et al. (2009) used
a spherical model to describe the clusters and the fiducial model used in both samples
was the ΛCDM scenario.

3.1. Analysis and results
Again, a possible departure from the CDDR (η = 1) was parametrized by using two
functional forms for η(z), how defined earlier.

By combining Eqs. (1) (with η = 1) and (5), we define

ηobs (z) =
D3

L f 2
gas

N2(1 + z)6D∗3
A

(6)

and the likelihood estimator is defined by χ2 statistics as in (3) and where σobs takes
into account the propagation of the statistical errors in eq. (6).

For La Roque et al. samples was obtained η0 = −0.03+1.03
−0.65 ( χ2

dof
= 1.34) for P1

and η0 = −0.08+2.28
−1.22 ( χ2

dof
= 1.34) for P2 and for Ettori et al. samples was obtained
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η0 = −0.97+0.54
−0.38 ( χ2

dof
= 1.12) for P1 and η0 = −1.60+0.90

−0.70 ( χ2
dof
= 1.13) for P2, both

in 2σ confidence level.
Regardless of the CDDR parameterization adopted, we clearly see that the La

Roque et al. (2006) plus SNe Ia sample is in perfect agreement with the η0 = 0 value
(η = 1), which means that CDDR is valid, whereas the Ettori et al. (2009) plus SNe Ia
data presents a significant conflict.

4. Conclusions

In this paper we examined two cosmological model-independent methods to test the
CDDR by using galaxy clusters and SNe Ia observations. We also saw that fgas model
function depends explicitly on the CDDR, as well as, the CDDR’s validity is closely
dependent of assumptions used to describe galaxy clusters.

The achieved results by the first method, although independent of any cosmological
scenario, depends on the starting physical hypotheses describing the galaxy clusters
since their analysis revealed that the isothermal elliptical β model is compatible with
the CDDR at 1σwhile the non-isothermal spherical model is only marginally compatible
at 3σ.

In addition, for all analyses performed in two tests, a negative value of η0 is
preferred. In principle, this result can be explained in terms of cosmic opacity that can
violate the CDDR (Corasaniti, 2006) or the existence of axion-like and mini-charged
particles (Avgoustidis et al., 2010).

Therefore, the presented results reinforce the interest in searching for new and
independent methods to test the CDDR.
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Abstract. We construct spherically symmetric thin-shell wormholes with a
generalized Chaplygin gas at the throat, in Born-Infeld electrodynamics coupled
to Einstein gravity. We analyze their stability under radial perturbations.

1. Introduction

Traversable Lorentzian wormholes (Morris et al. 1988) are theoretical objects with a
throat that connects two regions of the same universe or two different universes. They
are characterized by being threaded by matter that violates the null energy condition and
its amount can be arbitrarily small at the cost of increasing the pressure at the throat.
A particular class of wormholes can be obtained by using the thin-shell formalism, i.e.
by cutting and pasting two manifolds to construct a new one, with a shell at the joining
surface corresponding to the throat (Poisson et al. 1995), which must fulfill the flare-out
condition.

Born-Infeld electrodynamics is a non-linear theory proposed in order to avoid
the infinite self energies of charged point particles arising in Maxwell theory. Born-
Infeld type actions have appeared in low energy string theory, leading to an increasing
interest in non-linear electrodynamics. The field equations obtained from the action of
Born-Infeld electrodynamics coupled to Einstein gravity have the spherically symmetric
vacuum solution (Bretón 2002):

ds2 = −ψ(r)dt2 + ψ(r)−1dr2 + r2(dθ2 + sin2 θdφ2), (1)

ψ(r) = 1 − 2M
r
+

2
3b2

r2 −
√

r4 + b2Q2 +

√
|bQ |3
r

F
arccos

(
r2 − |bQ |
r2 + |bQ |

)
,

√
2

2


 ,
(2)

with M the mass, Q the charge, and F (γ, k) the elliptic integral of the first kind.

2. Wormhole construction and stability analysis

From the geometry (1) we construct the thin-shell wormholes, by using the Darmois-
Israel formalism (Israel 1966). We cut and paste two identical copies of the region
r ≥ a; then at r = a there is a shell where the throat is located. We let a = a(τ),
with τ the proper time on the shell, and we take a larger than the horizon radius rh,
in order to avoid the presence of the horizons and the singularity in the new manifold.
The Einstein equations on the shell can be reduced to Lanczos equations that relate the
extrinsic curvature with the surface stress-energy tensor Sı̂ ̂ = diag(σ, pθ̂, pϕ̂ ), with σ
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the surface energy density and pθ̂ , pϕ̂ the transverse pressures, from which we obtain

σ = −
√
ψ(a) + ȧ2

2πa
, (3)

p = pθ̂ = pϕ̂ =

√
ψ(a) + ȧ2

8π

[
2
a
+

2ä + ψ′(a)

ψ(a) + ȧ2

]
. (4)

From Eq. (3) we see that σ < 0, which indicates the presence of exotic matter at the
junction shell. In a previous related work (Richarte et al. 2009), the matter at throat
was modelled by a gas with a linearized equation of state; here we adopt a generalized
Chaplygin gas (Bento et al. 2002), with an equation of state

p = A|σ |−α, (5)

where A > 0 and 0 < α ≤ 1 are constants. The generalized Chaplygin gas has been
adopted in current cosmology studies in order to explain the accelerated expansion of the
universe. The dynamical evolution of the wormhole throat can be obtained by replacing
Eqs. (3) and (4) into Eq. (5) to give{

[2ä + ψ′(a)]a2 + [ψ(a) + ȧ2]2a
}

[2a]α − 2A[4πa2]α+1[ψ(a) + ȧ2](1−α)/2 = 0. (6)

This equation should be satisfied by thin-shell wormholes in Einstein-Born-Infeld theory,
threaded by exotic matter with the equation of state of a generalized Chaplygin gas. If
static solutions exist, they should satisfy Eq. (6) evaluated at a constant a0. We can
obtain σ = σ(a) by the integration of the equation

σ̇ = −2 (σ + p)
ȧ
a
, (7)

which comes from the the conservation equation. Then, we replace σ(a) in Eq. (4) to
find the equation that determines completely the dynamics of the throat:

ȧ2 = −V (a) = −
{
ψ(a) − [2πaσ(a)]2

}
, (8)

where V (a) can be interpreted as a potential, so it can be expanded in a Taylor series
in order to analyze the stability of static solutions. It is not difficult to see that V (a0) =
V ′(a0) = 0, so the stability condition is given by V ′′(a0) > 0, which takes the form
(Eiroa et al. 2012)

V ′′(a0) = ψ′′(a0) +
(α − 1)[ψ′(a0)]2

2ψ(a0)
+
ψ′(a0)

a0
− 2(α + 1)ψ(a0)

a2
0

> 0. (9)

By using Eq. (6) evaluated in a0, we can find the possible throat radii a0, for different
values of the Born-Infeld parameter b, the constant A, the exponent α, the mass M and
the charge Q. These solutions are stable if inequality (9) is fulfilled. The results shown
in Figs. 1 and 2 present an important change around Qc/M , where Qc is the critical
charge, corresponding to the extremal value, from which the original metric used in the
construction has no horizons. In the plots, the stable solutions are displayed with solid
lines, the dotted lines correspond to unstable configurations; and the regions that have
no physical meaning are shaded in gray.
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Figure 1. Stability for b/M = 1, in this case Qc/M = 1.02526. Left:
α = 0.2, right: α = 1.
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Figure 2. Stability for b/M = 2, in this case Qc/M = 1.10592. Left:
α = 0.2, right: α = 1.

• For b = 0 (then Qc/M = 1), the Born-Infeld electrodynamics reduces to Maxwell
theory, so the Reissner-Nordström solution is used in the wormhole construction
(Eiroa, 2009).

• If 0 < b/M ≤ 1 the behavior of the solutions is similar to what is shown in Fig.
1, corresponding to b/M = 1 (then Qc/M = 1.02526):
Case 0 < α < 1 (for example, α = 0.2): For 0 ≤ |Q | < Qc and |Q | not very close
to Qc , there is one unstable solution for each value of AMα+1, and this behavior
continues when this parameter grows. For |Q | . Qc , we find three solutions, one
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of them stable; when AMα+1 grows there is only one unstable solution close to
the radius of the horizon of the original manifold. For |Q | > Qc , there are three
solutions, only one of them is stable.
Case α = 1: For 0 ≤ |Q | < Qc and |Q | not very close to Qc , there is only one
solution which is unstable. For |Q | . Qc , there are two solutions, one stable and
the another unstable. For |Q | > Qc , there are three solutions, only one of them is
stable.
Comparing the results shown in Fig. 1 with those obtained in Reissner-Nordström
case (Eiroa, 2009), we observe a similar behavior when b = 0 and when 0 <
b/M ≤ 1, for the same values of α. The only difference is found in the case
|Q | > Qc , where there is a small unstable solutions for 0 < b/M ≤ 1 which is not
present in b = 0 case.

• From Fig. 2, corresponding to b/M = 2 (then Qc/M = 1.10592):
Case 0 < α < 1 (for example, α = 0.2): For 0 ≤ |Q | < Qc and |Q | not very close
to Qc , there is always one unstable solution. For |Q | . Qc or |Q | > Qc , there
exists three solutions, one of them is stable.
Case α = 1: For 0 ≤ |Q | < Qc or |Q | > Qc , with |Q | not very close to Qc , there
is only one unstable solution. For |Q | ∼ Qc , there are two solutions, one of them
stable.

• When b/M takes large values (not shown in the figures), for example if b/M = 5,
(then Qc/M = 1.48468), for any values of α and Q there is only one solution,
which is always unstable (Eiroa et al. 2012).

3. Conclusions

For small values of b/M , the behavior of the solutions resemble the one obtained
for Reissner-Nordström metric, except that in the Einstein-Born-Infeld case are found
unstable solutions for large values of |Q |/M . As b/M increases, i.e. when the theory is
distancing itself from Einstein-Maxwell, the stability region becomes smaller. For large
values of b/M the stable solutions are not longer present.
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Abstract. We use the “displace, cut and reflect” method to generate thin disks
from Gutsunaev-Manko solution of Einstein Equations. This solution represents
a massive object endowed with magnetic dipole moment and our purpose is to
study the stability of the disk-like configurations obtained with this method.

1. Introduction

Solutions that represents the gravitational field of an object with axial symmetry can
be used to model galaxies and accretion disks. Magnetic fields have an important part
in the study of astrophysical objects, such as neutron stars, white dwarfs, black holes
and of galaxy formation. There is in our analysis, therefore, astrophysical interest in
incorporating magnetic fields.

We can obtain solutions of Einstein Equations that correspond to disk-like con-
figurations and these solutions have been studied for many years. Disks without radial
pressure were initially studied by Bonnor and Sackfield (Bonnor & Sackfield, 1968)
and Morgan and Morgan (Morgan & Morgan, 1969). Static disks with radial pressure
were studied by Morgan and Morgan (Morgan & Morgan, 1970). We can also have the
superposition of a disk with a black hole (Lemos & Letelier, 1993) and include other
physical elements like magnetic fields for example (Letelier, 1990).

2. The “displace, cut and reflect” method

We can separate the “displace, cut and reflect” method in three steps: first, we choose an
hypersurface that divide the space containing a gravitational source in two, one of which
contains this source; second, we discard the part of space with the gravitational source;
and third, we reflect the non-singular region across the plane z = 0 delimited by our
surface. The result of this method will be a space with a singularity of the Dirac delta
type with support on the surface z = 0 and this is equivalent to make the mathematical
transformation z → |z | + z0 (Vogt & Letelier, 2003).

3. Stability analysis

The analysis is made through a perturbation in the energy-momentum tensor and we
study the conservation of the perturbed equations of motion. Considering an orthonor-
mal basis of tetrads we can write the energy-momentum tensor as Qαβ = (σUαUβ +
Pr XαXβ + PϕYαYβ)δ(z), where σ, Pr and Pϕ are the energy density, radial and az-
imuthal pressures, Uα is the quadrivelocity of the fluid and Xα,Yα are the main time-like
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directions of the fluid. For a perturbation like δQαβ (t, r, ϕ) = δQαβ (r)ei(kϕϕ−ωt) . the
conservation equations to the perturbed energy-momentum tensor (δQαβ);β = 0 are

δUr
,r (σU t + ξ1Pr Xr ) + δUr [F (t, r, σU t ) + ξ1,rPr Xr + (1)

+ξ1F (t, r, Pr Xr )] + δUϕ[ikϕ (σU t + ξ2PϕYϕ )] + δσ(−iωU tU t ) = 0,

δPr,r (Xr Xr ) + δUr [−iω(σU t + ξ1Pr Xr )] + δσ(U tU tΓrtt ) + (2)
+δPrG(r, r, Xr Xr ) + δPϕYϕYϕΓrϕϕ = 0,

δUϕ[−ω(σU t + ξ2PϕYϕ )] + δPϕ (kϕYϕYϕ ) = 0, (3)

where ξ1 = −Xr/Ut, ξ2 = −Yϕ/Ut, F (I, J,K ) = K,J + K (2ΓIIJ + Γ
λ
λJ ) and G(I, J,K ) =

K,J + K (ΓIIJ + Γ
λ
λJ ).

For the case of disks with the radial pressure equals to the azimuthal pressure
(Pr = Pϕ = P) we have

δP =

(
P,r
σ,r

)
δσ, (4)

and rearranging Equations (1)-(3) we obtain the expression

ASδσ,rr + BSδσ,r + CSδσ = 0, (5)
where AS, BS and CS depend on the coefficients of these same equations.

For disks without radial pressure (Pr = δPr = 0) we obtain from substituting Uϕ

and Ur in Equation (1) a first order differential equation to the perturbation δσ

Aδσ,r + Bδσ = 0⇒ δσ = e
∫

(−B/A)dr, (6)
where A and B depend on the coefficients of Equations (1)-(3).

4. Applications of the method and final remarks

If we apply the method to Schwarzschild solution we observe that the perturbation
profiles are stable and have oscillatory form (see Figure 1). Considering the Gutsunaev-
Manko case, by analyzing the perturbation profiles we get singularities and could not
find any stable modes (see Figure 2).

4.1. Schwarzschild solution
Schwarzschild solution in cylindrical coordinates is

ds2 =

*,1 −
m

2
√
r2+z2

0

+-
2

*,1 +
m

2
√
r2+z2

0

+-
2 dt2 − *..,

1 +
m

2
√

r2 + z2
0

+//-
4 [

dr2 + dz2 + r2dϕ2
]
. (7)
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Figure 1. Perturbation profile for the energy density, radial and azimuthal
velocity for the parameters z0 = 0.5 and m = 0, 4

4.2. Gutsunaev-Manko solution
We can include magnetic field using Gutsunaev-Manko solution, which represents a
massive object endowed with a magnetic dipole moment (Gutsunaev & Manko, 1987).
This solution in prolate ellipsoidal coordinates can be written as:

f =
x − 1
x + 1

[
[x2 − y2 + α2(x2 − 1)]2 + 4α2x2(1 − y2)

[x2 − y2 + α2(x − 1)2]2 − 4α2y2(x2 − 1)

]2

, (8)

e2γ =
x2 − 1
x2 − y2

[
[x2 − y2 + α2(x2 − 1)]2 + 4α2x2(1 − y2)

]4

(1 + α2)8(x2 − y2)8 , (9)

where f = f (r, z) and γ = γ(r, z) are the components of a general axially symmetric
metric

ds2 = f dt2 − 1
f

[
e2γ (dr2 + dz2) + r2dϕ2

]
. (10)

We regain Weyl coordinates with the transformation

x =
1
2k

[√
r2 + (z + k)2 +

√
r2 + (z − k)2

]
(11)

y =
1
2k

[√
r2 + (z + k)2 −

√
r2 + (z − k)2

]
, (12)
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Figure 2. Profile of (−B/A) present in the solution of the perturbation in
the energy density for (z0 = 1.8, kϕ = 0 and ω = 1), (α = 0.3, kϕ = 0 and
ω = 1) and (α = 0, kϕ = 0 and ω = 1) with m = 1.

with k = m(1 + α2)/(1 − 3α2).

5. Summary and perspectives

It is important to mention that the electromagnetic potential is continuous and has reflec-
tion symmetry across the plane z = 0, but the magnetic field posses discontinuities at
this surface in such way that our disk presents a superficial monopole density, which im-
pairs us of considering this disk a viable physical solution to describe real astrophysical
objects.

A possible extension of this work would be the inclusion of other physical elements,
such as rotation. We could also analyse how the magnetic field alters the properties of
thick disks.
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Abstract. The study of the structure of compact objects in modified theories
of gravity can be useful to constrain f (R)-theories in the strong gravitational
regime. In particular, the structure of compact stars in the theory with Lan-
grangian density f (R) = R + αR2 have been recently explored using the metric
formalism.

In this work we analyze configurations of neutron stars in squared-gravity
using the Palatini formalism, in which the field equations are of second or-
der, and the modified Tolman-Oppenheimer-Volkoff equations for a spherically-
symmetric and static metric can be derived without approximation, as in General
Relativity.

The numerical integration of the structure equations allows us to study the
mass-radius configurations and the characteristics of internal profiles.

We compare our results with those obtained using General Relativity.

1. Analytical formulation

The so-called f (R) theories of gravity are obtained when the Ricci curvature scalar, R,
is replaced, in the Einstein-Hilbert action, by a function of it. In particular, the simplest
choice f (R) = R + αR2, also called squared-gravity, has been shown to be a viable
alternative to General Relativity (GR), which satisfies the current Solar System tests for
gravity (Sotiriou & Faraoni, 2010). However, gravity in the strong gravitational regime
is largely unconstrained by observations. Hence, the study of the properties of Neutron
Stars (NSs) and Quark Stars (QSs) in different gravitational frameworks may help in
setting constraints (and eventually discard) alternative theories.

The modified Hilbert-Einstein action for squared-gravity in the Palatini formalism
is

S[g, Γ, ψm] =
1

16π

∫
d4x
√−g f (R) + Sm[gµν, ψm], (1)

where f (R) = R+ αR2, R ≡ gµνRµν (Γ), Rµν (Γ) = −∂µΓλµν + ∂λΓλµν + ΓλµνΓρνλ − ΓλνρΓρµλ
and Γλµν is the connection. The matter action, Sm, depends on the matter field, ψm,
and the metric, gµν , but is independent of the Christoffel symbols. Here α is a free
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parameter of the theory which must be positive due to stability considerations (Sotiriou
& Faraoni, 2010). The scalar curvature R can be solved as an algebraic function of the
trace T of the energy-momentum tensor as R = −8πT .

We assume a spherically-symmetric and static metric, ds2 = −eA(r )dt2+eB(r )dr2+
r2(dθ2 + sin2 θdφ2), and we consider a perfect-fluid matter with energy-momentum
tensor Tµν = (ρ + p)uµuν + pgµν (where ρ is the energy density and p is the pressure).
With these considerations, the modified Tolman-Oppenheimer-Volkoff (TOV) equations
are:

dp
dr
= − 1

1 + γ0

ρ + p
r (r − 2m)

(
m +

4πr3p
1 + 2αR

− α0
2

(r − 2m)

)
, (2)

dm
dr
=

1
1 + γ0

(
4πr2ρ

1 + 2αR
+
α0 + β0

2
− m

r
(α0 + β0 − γ0)

)
, (3)

where m(r) ≡ r (1 − e−B(r ) )/2. The quantities α0, β0 and γ0 are functions of f (R) and
the derivatives of f (R) with respect to R (which depend on the parameter α) and the
coordinate r (Olmo, 2008; Barausse et al., 2008).

The above system of differential equations can be solved if an Equation of State
(EoS) p = p(ρ) is given. Through this work we use three different EoS: PLY, which is
a polytropic EoS of adiabatic index 2; SLY, which is a realistic EoS for nuclear matter
(Haensel & Potekhin, 2004); and SQM, which is a simple linear EoS for quark matter
(Degrand et al., 1975). The derivatives of f (R) with respect to the coordinate r, hidden
in the functions α0, β0 and γ0, are expressed in terms of the first and second derivatives
of p with respect to ρ, by means of the EoS, as R is related to T , contrary to GR,
where no derivatives of the EoS are involved. Thus, analytical approximations instead
of tabular EoS are needed in order to achieve enough precision.

2. Results

Based on a Runge-Kutta numerical scheme, we integrate equations (2) and (3) in the
radial coordinate from the center to the surface of the star, with boundary conditions:
m(r = 0) = 0, p(r = 0) = pc , ρ(r = 0) = ρc , p(r = R) = 10−12pc and m(r = R) = M .
A static configuration of total mass, M , and radius, R, is obtained for each value of ρc ,
and for each EoS adopted.

In Figure 1 we show the family of static configurations for the PLY, SLY and SQM
EoS considering several values of the α parameter (see the legend). Whereas for simple
polytropic EoS (PLY and SQM), the static configurations are almost indistinguishable
from GR (α = 0), in the case of the realistic and more complex SLY EoS, relevant
differences arise. The maximum mass, Mmax, grows up to ∼> 10% when α8 = 10.
Moreover, contrary to what is found by means of a perturbative approach in the metric
formalism (Arapoğlu et al., 2011; Orellana et al., 2013), Mmax increases for α > 0.

In Figure 2 we show the internal mass profiles m(ρ) obtained for the SLY EoS
using the same values of the α parameter (solid lines, left axis), considering ρc =
2.5× 1015 gr cm−3, which corresponds to ∼ Mmax. Strong differences with the GR case
(thick-solid line) can be noted: (i) a huge difference in the total mass, M , of the static
configurations arises at densities ∼ 1014 gr cm−3, and (ii) a counter-intuitive feature in
the mass profile occurs at densities ∼ 5 × 1011 gr cm−3, which is seen as a dip in the
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Figure 1. Mass-Radius relations obtained for three EoS considering α8 =
α/108 cm2 = 10, 5, 2, 1, 0 (GR case).

profile (dm/dρ > 0 → dm/dr < 0). The latest behaviour was also pointed out in the
metric formalism in Orellana et al. (2013) and it is independent of the value of α. In
Figure 2, we also plot the logarithmic first and second-order derivatives of the SLY EoS
in gray-dashed lines (see right axis), which makes explicit the correlation between this
particular behaviour of the profiles and the complexity of the EoS. On the other hand,
we found neither counter-intuitive features nor huge differences in the total mass in the
internal profiles obtained with PLY and SQM EoS.

3. Discussion

We have shown how mass-radius configurations of compact stars are modified under
squared-gravity in the Palatini formalism. The field equations depend not only on the
explicit p − ρ relation (the EoS), but also on the first and second-order derivatives of
p with respecto to ρ. If a simple polytropic or linear equation is adopted, differences
between compact stars in squared-gravity and GR are negligible. However, if a realistic
EoS, as SLY, is used, the maximum mass achievable can be significantly larger than
its value in GR, becoming an observable signature of modified gravity in the strong
gravitational regime. Moreover, we also found huge differences in the internal mass
profiles, which present a counter-intuitive characteristic (dm/dr < 0) in the outer layers
of the compact stars.

We shall continue our research by exploring the impact of differentiability con-
straints on the stellar structure calculations in modified gravity.

Acknowledgments. FG, FATP, MO and GER acknowledge support from CON-
ICET. SEPB acknowledges support from FAPERJ and UERJ.
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Abstract. The correspondence between accelerated cosmological models pow-
ered by a decaying vacuum energy density and by the gravitationally particle
production mechanism is investigated. Although being different in the physics
behind them, we show that both classes of models under certain conditions
can exhibit the same dynamic and thermodynamic behavior. We also make an
observational analysis in order to constraint some classes of these models.

1. Introduction

It is well known that the standard model of cosmology, ΛCDM, provides a very good
description of the observed Universe. However, despite its observational successes, it
suffers from some conceptual problems.

A possible alternative to resolve the cosmological constant problem and the co-
incidence problem is to suppose that the vacuum energy is not a constant but decays
into other cosmic components (Borges & Carneiro, 2005). The usual treatment is to as-
sume that Λ(t) = 8πGρv (t) is coupled to the other components of the universe thereby
producing particles continuously and slowly. In these models the explanation for the
present smallness of the vacuum energy density is that it has been decaying during the
whole life of the universe, and, as such, the vacuum energy density is small nowadays
because the Universe is too old.

Another possibility is the process of matter creation induced by a time varying
gravitational field, which is also macroscopically described by a negative pressure
(Lima & Germano, 1992). In this kind of model (CCDM models), by assuming that
dark matter particles can be produced by a time varying gravitational field, it could
be also possible to obtain a late time acceleration in a universe composed only by
pressureless fluids, like baryons and cold dark matter (Lima et al. 2008; Fabris et al.
2014; Ramos et al. 2014).

Here we investigate the relations between these two cosmological scenarios, be-
ginning from a dynamical point of view.

Let us consider a generic decaying vacuum model, whose Friedmann equations
reduce to:

ρ + Λ(t) = 3
ȧ2

a2 + 3
k

a2 , (1)

p − Λ(t) = −2
ä
a
− ȧ2

a2 −
k

a2 , (2)
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where ρ and p are the energy density and the equilibrium thermostatic pressure of the
usual cosmic fluid (baryons, radiation and dark matter) with p = wρ. a is the cosmic
scale factor and k is the parameter of curvature. For simplicity, henceforth it will be
assumed that the decaying vacuum is coupled only with the dominant component.

The decaying vacuum causes a change in the number of particles of dark matter, so
the equation describing particle concentration has a source term, i.e., Nα

;α = ṅ + 3 ȧ
a n =

nΓ. Where, Γ is the rate of change of the number of particles, n = N/a3 is the particle
number density and Nα = nuα is the particle flux.

By combining Eqs. (1) and (2), or more directly, from the total energy conservation
law one finds

ρ̇ + 3
ȧ
a

(ρ + p) = − ρ̇Λ . (3)

Since the vacuum decay is the unique source of particle creation, we can write
ρ̇Λ = −ζnΓ, where ζ is a positive phenomenological parameter.

The second class of scenarios to be considered here are models with gravitationally
induced particle production. In this case, the Friedmann equations take the following
form

ρ̃ = 3
ȧ2

a2 + 3
k

a2 , (4)

p̃ + pc = −2
ä
a
− ȧ2

a2 −
k

a2 , (5)

where pc (creation pressure) is a non-equilibrium correction term describing the particle
production. It is given by pc = −αñΓ̃/3H , where Γ̃ is the rate of particle creation induced
by the varying gravitational field. The particle number density in this case is described
by Ñα

;α = ˙̃n + 3 ȧ
a ñ = ñΓ̃. From now on, a tilde denotes the fluid component quantities

of the CCDM model in order to distinguish its values from their possible Λ(t)CDM
counterparts.

Combining above equations one finds the conservation equation

˙̃ρ + 3H ( ρ̃ + p̃ + pc ) = 0 . (6)

By comparing the Friedmann equations of the two models we can see that the
condition to a dynamic equivalence is given by: pc = −(1 + w)Λ(t). This expression
relates Λ(t) cosmologies with the corresponding creation pressure of CCDM models.

Special attention has been paid to the process termed “adiabatic” particle produc-
tion. It means that particles and entropy are produced in the space-time, but the specific
entropy (per particle) remains constant ( ˙̃σ = 0). In this case, the parameter α is equal
to ( ρ̃ + p̃)/ñ, so that the creation pressure reads

pc = − ( ρ̃ + p̃)Γ̃
3H

= − (1 + w) ρ̃Γ̃
3H

. (7)

From the equivalence condition together with above equation we find Λ(t) = ρ̃Γ̃/3H .
By assuming a spatially flat geometry we have that ρ̃ = 3H2, so the equivalence
condition reads Λ/H2 = Γ̃/H .
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2. Thermodynamic correspondence

Let us now examine the possibility of a complete thermodynamic equivalence. In order
to obtain the thermodynamic description of decaying vacuum-Λ(t) models one needs
to obtain the evolution equations of the specific entropy (σ = S/N) and temperature (T)
of the created component. In this context, the vacuum works like a second component
transferring energy continuously to the matter component. We assume that its chemical
potential is null (µv = 0), so the vacuum equation of state (pv = −ρv) implies that
σv = 0. Under such conditions, the time-comoving derivative of the entropy flux,
which is given by Sα = nσuα , combined with the equation for Nα

;α, the expression
for ρ̇Λ, and the Friedmann equations, implies that σ̇ + σΓ = Γ(ζ − µ)/T , where µ is
the chemical potential of the created particles. The temperature satisfies the following
evolution law

Ṫ
T
=

(
∂p
∂ρ

)

n

ṅ
n
− Γ

T
(
∂ρ
∂T

)

n

[
T
(
∂p
∂T

)

n

+ n
(
∂ρ

∂n

)

T

− ζn
]
. (8)

In the case of CCDM models the specific entropy is given by ˙̃σ+σ̃Γ̃ = Γ̃(α− µ̃)/T̃ .
And the temperature follows the evolution law

˙̃T
T̃
=

(
∂ p̃
∂ ρ̃

)

ñ

˙̃n
ñ
− Γ̃

T̃
(
∂ρ̃

∂T̃

)

ñ

[
T̃
(
∂ p̃

∂T̃

)

ñ

+ ñ
(
∂ ρ̃

∂ñ

)

T̃

− αñ
]
. (9)

Comparing the equations above we note that when α = ζ the two pictures are thermody-
namically equivalent. In addition, from the expressions for ρ̇Λ and pc we also see that
such an equality also implies ρ̇Λ = 3Hpc , as should be expected due to the dynamic
equivalence.

Now by considering that the particle creation process in both pictures is “adiabatic",
some equilibrium relations need to be preserved. In this case the second terms on right-
hand side of Eqs. (8) and (9), which correspond to the non-equilibrium contributions,
must be identically zero. In this case, it is possible to show that

α = ζ =
ρ + p

n
. (10)

Physically, this relation amounts to saying that (σ̇ = 0). Hence, the equilibrium relations
are preserved only if the specific entropy of the created particles is constant. This means
that Ṡ

S =
Ṅ
N = Γ, for both pictures.

3. Unifying the Dark Sector

As seen previously, in vacuum decay models we must consider at least two main
components, Λ term and dark matter, in which vacuum is decaying. Now, we will
interpret the standard model and someΛ(t) models that have been discussed in literature
in terms of matter creation models. We will restrict ourselves to late time behavior, and,
as such, we take w = 0.
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Firstly, we rewrite Eq. (6) in terms of the interaction rate, i.e.,

˙̃ρ + 3H ( ρ̃ − Γ̃H ) = 0 . (11)

Generically, for a givenΛ(t) model, the corresponding matter creation model is obtained
by combining the equivalence condition with (11) and performing the integration.

We are going to consider three particular cases. The Model 1, Λ(t) = cte = λ,
corresponds to the standard ΛCDM model. In this case we have for the corresponding
CCDM model, Γ̃ = λ/H , where λ is the cosmological constant of theΛCDM. Inserting
this expression into Eq. (11) and performing the integration, we can find the conservation
equation for this model. By substituting the conservation equation into Eq. (4) we can
obtain an expression for H as a function of redshift (z), which describes the dynamics
of a CCDM scenario that behaves like the ΛCDM model. Naturally, as discussed in the
first sections, due to the thermodynamic and dynamic equivalence it is rather difficult
to distinguish observationally between Model 1 and ΛCDM model.

Through the same method we can obtain the dynamic evolution of the Model 2,
described by the simple lawΛ = γH (Borges & Carneiro, 2005). And also of the Model
3, described by Λ = c + βH2 (Lima & Maia, 1994).

In our observational analysis we make use of data from SNe Ia (Suzuki et al.,
2012) and CMB/BAO ratio, in order to compare the three models through their resulting
dynamical equations. We put constraints on the matter density parameters, Ω̃m, which
quantifies the amount of matter that is clustering in each model, and we also find
constraints to the free parameter β of Model 3.

For Model 1 we find that the likelihood function peak is at Ω̃m1 = 0.282+0.014
−0.014,

therefore, in excellent agreement with observations. While for Model 2 the peak is at
Ω̃m2 = 0.449+0.013

−0.013. This shows that a constant creation rate of particles during the
cosmic evolution supplies a current value for Ω̃m higher than the observed. For Model
3 we find Ω̃m3 = 0.274+0.014

−0.014 and β = −0.018+0.026
−0.027 at 68.3% confidence level, with

χ2
min = 563.53 and ν = 581 degrees of freedom. While the reduced χ2

r ≡ χ2
min/ν =

0.97, thereby showing that the model provides a very good fit to the data.
Acknowledgments. L. G. is supported by FAPESP (2012/09380-8).
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Abstract. The emergence of the seeds of cosmic structure from a perfect
isotropic and homogeneous Universe has not been clearly explained by the
standard version of inflationary models. We consider alternative scenarios where
the emergence of an anisotropic and inhomogeneous Universe from an initial
isotropic and homogeneous state can be explained by the of introduction the
“self-induced collapse hypothesis”, a scheme in which an internally induced
collapse of the wave function of the inflaton field is the mechanism by which
inhomogeneities and anisotropies arise at each particular length scale. Our aim
is to test these models through statistical analysis comparing them with recent
data of the Cosmic Microwave Background and galaxy surveys. This procedure
will restrict the value of free parameters and test the viability of each scheme
using the results of latest observational experiments.

1. Introduction

Observations of the Cosmic Microwave Background (CMB) radiation are the most
powerful tools to study the early Universe and establish the value of cosmological
parameters. In the last decade, there have been great advances concerning the CMB data
due to a remarkable increase in the accuracy of observational techniques. Furthermore,
the agreement between theory and observations has strengthened the theoretical status
of inflationary scenarios among cosmologists.

In the standard inflationary paradigm the emergence of all structures in our Universe
like galaxies and galaxy clusters is described by a featureless stage represented by a
background Friedmann-Robertson-Walker (FRW) cosmology with a nearly exponential
expansion driven by the potential of a single scalar field and from its quantum fluctuations
characterized by a simple vacuum state. However, when the scenario is considered more
carefully, a conceptual problem emerges regarding a change in the initial symmetries of
the Universe. Indeed, the dynamics of quantum unitary evolution cannot explain how an
inhomogeneous and anisotropic Universe originates from a completely homogeneous
and isotropic initial situation. Dr. Sudarsky and collaborators have developed one
proposal to handle these shortcomings (Sudarsky, 2011). To deal with the problem a
new ingredient is introduced into the inflationary account of the origin of cosmic seeds:
“the self-induced collapse hypothesis”. In this scheme an internally induced collapse
of the wave function of the inflaton field is the mechanism by which inhomogeneities
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and anisotropies arise at each particular length scale. We do not know exactly what kind
of physical mechanism would lie behind what looks like a spontaneous collapse of the
wave function, as there is no “observer” who can possible “measure” the Universe. We
assume that the effect is caused by an unknown quantum aspect of gravitation.

2. Collapse models

We consider the action of a scalar field minimally coupled to gravity:

S[φ, gab] =
∫

d4x
√−g

( 1
16πG

R[gab] − 1
2
∇aφ∇bφgab − V (φ)

)
, (1)

where φ is the inflaton field and gab is the metric. Fields are separated into their
homogeneous (“background”) part and the perturbations (“fluctuations”). Conformal
Newton gauge is the most appropriate choice for this scheme.

Einstein’s equations are followed up to the first order and scalar field perturbations
are quantized in the framework of a semi-classical gravitation theory (Wald, 1994)
Gab = 8πG < T̂ab >φ. Hypothesis are: (i) given a value ηc

k
of conformal time the state

collapses to a different one (~k is not longer in its vacuum state), (ii) the inflaton’s wave
function is initially the vacuum state, this implies that the metric perturbations are null
before the collapse, (iii) each collapse mode represents beginning of inhomogeneities
and anisotropies at the characteristic scale of that mode, and (iv) it is possible to describe
the state of the system if collapse modes at each time and previous collapse state are
known. Primordial power spectrum can be expressed:

P(k) = C (k)As

(
k
k0

)ns−1
, (2)

where C (k) is a function that depends on the scheme under which the collapse hypothesis
is taking place. In this work we will show results from three different collapse models
depending on which variable changes as result of collapse: inflaton field, canonical
conjugate momentum or both. It follows from Unánue & Sudarsky (2008) and Landau
et al. (2012) that the primordial power spectrum is nearly scale invariant if the time of
collapse of each mode can be expressed as:

ηck =
A
k
+ B, (3)

where A and B are constants (which value must be constrained). The case where B = 0
reduces P(k) to a constant, giving a perfectly scale invariant primordial power spectrum
(ns = 1 for the standard model, see De Unáue & Sudarsky, 2008 for C (k) expressions).
Therefore, we take this expression for the collapse time in order to start with a scale
invariant power spectrum and study small deviations with respect to the standard model.
Let us now define a fiducial model, which will be taken just as a reference to discuss
the results we obtain for the collapse models. The fiducial model is a ΛCDM model
with the following cosmological parameters: Ωbh2 = 0.021, Ωch2 = 0.119, H0 = 70,
τ = 0.084, ns = 0.96. The temperature anisotropy for the collapse models together
with the prediction for the fiducial model is shown in Figs. 1 and 2.
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Figure 1. Model I (left): Both expectation values for the field and its
canonical conjugate momentum collapse. This plot compares the tempera-
ture anisotropy predictions for different values of the collapse conformal time
with the fiducial model. For values |A| > 20, collapse model I is indis-
tinguishable from the standard one. Model II (right): Only the conjugate
momentum changes its expectation value after the collapse. A comparison of
the temperature anisotropy predictions for different values of the collapse con-
formal time is shown. Landau et al. (2012). Reprinted with permission from
Physical Review D85, 123001 (2012). Copyright(2012) by the American
Physical Society.
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Figure 2. Model III. Both field and its canonical conjugate momentum are
affected by the collapse following a correlation described by a Wigner’s distri-
bution function. Both plots compare the temperature anisotropy predictions
for different values of the collapse parameters with the fiducial model.

It follows from Fig. 2 that not every value of ηc
k

gives a good fit to the observational
data (represented by the fiducial model). This gives predictability to the model, as not
every pair of values for A and B will do. However, there are certain values for the
collapse conformal time that fit observational data just as well as the standard paradigm.
Once our free parameters are constrained with CMB observations, we will end up with
a cosmological model that can explain in a more feasible way the origin of cosmic
structures.
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3. Conclusions

The emergence of the seeds of cosmic structure, from a perfect isotropic and homoge-
neous Universe, has not been clearly explained by the standard version of inflationary
models as the dynamics involved is not capable of breaking the initial symmetries of the
system. The self induced collapse hypothesis attempts to deal with this problem. The
proposal incorporates two free parameters which are to be constrained using the latest
CMB data available. Figs. 1 and 2 show that not all the values are viable and some of
them must be ruled out. In order to constrain the values of the free parameters A and B
we need to perform a statistical analysis with the latest CMB data.

Previous works show that collapse models I and II can explain with enough accuracy
the observations provided by WMAP 7-year release. Our aim now is to compare models
I, II and III with WMAP 9-year release and Planck data. We are working on different
schemes for collapse and also some cutting edge modifications to previous models, such
as the possibility of collapse occurring during the radiation era.
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Abstract. Gamma Ray-Bursts (GRBs) are considered one of the most enig-
matic events as well as one of the oldest known in the Universe. In this work,
we have studied ten different GRBs detected by Swift mission with redshift
between z = 0.69 and z = 3.60. We have used the pulse model proposed by
Norris (2005) for each GRB in four different energy bands to fit only regular
pulses. The analysis suggests that there are two type of pulses associated with
two specific radiation mechanisms which remain invariant to different ages of
the Universe. In fact, it confirmed that GRBs are candidates to standard candles.
We have analyzed light curves from different pulses and spectral lag of each
GRB. Also, we have determined correlations between spectral lag with some
others spectral parameters. We verified if the GRB’s analysis is consistent with
the two types of pulses defined by the physical classification (Zhang 2009), and
the relation of these with the geometry during its emission founded.

1. Introduction

GRBs are bringing important information about the expansion of the Universe (Piran
2004, Zhang & Mészáros 2004) as distances and cosmological effects (Piran 2004).
GRBs with known redshift are useful distance indicators of primordial stars, and could
help to track the history of the star formation in the Universe. One characteristic of GRB
prompt emission is the spectral lags (Norris et al. 2005, Arimoto et al. 2010) which is
the time delay in the arrival of low-energy emissions relative to high-energy emissions
(τlag = tpeak,low − tpeak,high ). We proposed to obtain spectral lag (between six energy
bands) with Norris’ model (Norris et al. 2005, Arimoto et al. 2010). Furthermore, we
found possible correlations between spectral lags and other spectral parameters.

2. Prompt emission

The GRB prompt emission is believed to have a non-thermal origin spectroscopically.
The emission is believed to originate from relativistic electrons and positrons accelerated
in relativistic outflows. The radiation is generated in strong magnetic fields. In addition,
the most natural emission mechanism should be Synchrotron and a well stablish model
is the fireball (Resmi & Zhang 2012). This model considers that internal shocks are
created by collisions between relativistic shells with different Lorentz factors ejected by
a central engine (Zhang & Mészáros 2004). Internal shocks are candidates for fermions
acceleration and is associated to a non-thermal emission. The most natural mechanism
for non-thermal emission is Synchrotron (Zhang & Mészáros 2004). Nevertheless, there
are some evidence that a simple Synchrotron spectrum does not fit all bursts (Resmi
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Figure 1. (a) Band Model spectrum of GRB 091208B and (b) GRB 080411
in four different energy bands.

& Zhang 2012). Others candidate mechanisms are inverse Compton and Synchrotron
self-Compton (Piran 2004). Different kinds of physical process can be involved such as
particle acceleration, magnetic field amplification, among others.

3. Methodology

We chose ten GRBs with redshift between z = 0.69 and z = 3.60. We extracted
light curves and spectrum using Heasoft 6.15.1 and the specific tools for Swift analysis.
Additionally, we used light curves with a binsize of 0.125 seconds. In order to extract
the spectral lag for each GRB, we generated four light curves in the following bands:
15-25 keV, 25-50 keV, 50-100 keV and 100-150 keV.

3.1. Pulse fitting
To determine the spectral lag we have compared the shape of the pulses in four different
energy bands. We have used the pulse model proposed by Norris et al. (2005), which
is presented as follows:

I (t) = A exp(2
√
τ1τ2) exp(τ1/t − t/τ2).

The maximum amplitude of the pulse is determined by the expression: tpeak =
√
τ1τ2.

The spectral lag is defined as the difference between maximum amplitudes in low and
high energy bands: τlag = tlow − thigh (Arimoto et al. 2010). Using Norris’ model for
this analysis, we found that the gamma-rays arrived before x-rays in 90% of pulses.
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3.2. Spectral Fitting
For spectral analysis, we used three different spectral models for each GRB and its
regions. We used Power law model in regions with low signal to noise ratio. However,
regions with regular pulses we used the Band Model and Cutoff power law model
normalized to 50 keV.

4. Results

We studied the spectral lag associated to individual GRB’s pulses. In this research,
we defined six different spectral lags based on the four energy bands chosen. Figure
2(a) shows two different kind of emissions associated with two photon indices for GRB
080411. The analysis of seventeen pulses is presented in Figure 2(b), where is possible
to observed that the luminosity are divided in two groups of pulses with short and long
lags. One group is associated with short lags and the release of high energies. On the
other hand, a second group is related to long lags, low energies and is related with an
interaction with the circumburst medium. Furthermore, we found a possible correlation
between low photon index and short spectral lag.
In the analysis, we are found pulses that appeared in low energy bands and vanished in
high energy bands. We observed that high energy photons arrived before low energy
photons because the burst must be related with the geometry of the emission.

Table 1 shows the spectral fitting parameters such as photon index, luminosity and
energy peak for regions of GRBs. Gamma-ray burst had regions with regular pulses
and others regions without pulses. Therefore, in regions without pulses (low signal to
noise ratio) we applied Power law model and regions with regular pulses we used the
normalized model or Band model.

(a) (b)

Figure 2. (a) GRB 080411: tlag vs Photon Index and (b) t4
lag

(τ50−100 −
τ25−50) vs Luminosity [1051erg/s].

5. Conclusions

We found two different kind of pulses with short and long spectral lags. The bimodality
of pulses suggest two or more different radiation mechanisms occurring within the
fireball expansion. One group of pulse are characterized by short lags, high luminosities
and low photon index, a second group are characterized by longer lags, short luminosities
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Table 1. Spectral fit for each GRB’s region.
GRB z Region Model Photon Index Ep[KeV] χ2/DoF Luminosity[1051erg/seg]

070306 1.49 I Normalized 1.49±0.12 146.55±62.80 0.81/55 0.60±0.02
II Power law 1.81±0.18 - 0.92/56 0.03±0.01

071010B 0.94 I Normalized 1.59±0.11 46.11±0.92 0.68/55 0.594±0.002
II Power law 2.70±2.15 - 0.98/56 0.01±0.001

080411 1.03 I Power law 1.22±0.04 - 1.13/56 0.982±0.004
II Power law 1.43±0.02 - 0.98/56 1.226±0.005
III Normalized 1.230±0.001 179.96±22.18 0.64/55 3.63±0.03
IV Power law 1.759±0.002 - 1.03/56 0.75±0.04
V Power law 2.2534±0.0009 - 0.91/56 0.61±0.01

VII Normalized 1.606±0.001 92.19±5.83 0.58/55 4.11±0.02
VIII Power law 2.654±0.002 - 1.17/56 0.87±0.02
IX Power law 2.6889±0.0005 - 0.76/56 1.179±0.001
X Power law 3.050±0.002 - 0.95/56 0.74±0.01

080413B 1.10 I Normalized 1.17±0.17 65.43±5.26 0.54/55 1.29±0.03
II Power law 4.55±3.91 - 1.37/56 0.02±0.02

080916A 0.69 I Normalized 0.61±0.13 149.38±14.17 0.86/55 0.209±0.004
II Normalized 1.09±0.19 52.34±3.03 1.06/55 0.078±0.002
III Power law 2.34±0.39 - 1.08/56 0.0061±0.0001

091020 1.71 I Normalized 1.30±0.17 146.08±62.32 0.59/55 0.92±0.05
II Power law 1.87±0.22 - 1.05/56 0.08±0.03

091208B 1.06 I Normalized 0.64±0.71 51.26±7.93 1.05/55 0.50±0.17
II Power law 1.71±0.07 - 0.76/56 1.22±0.04
III Power law 2.32±0.79 - 1.07/56 0.04±0.01

100704A 3.6 I Normalized 0.90±0.13 120.56±12.68 0.93/55 2.96±0.04
II Power law 1.51±0.5 - 0.85/56 0.129±0.002

110503A 1.61 I Normalized 0.73±0.14 112.67±8.23 1.25/55 6.46±0.13
II Power law 1.50±0.59 - 1.51/56 0.13±0.01

110715A 0.82 I Normalized 1.09±0.07 89.5±13.5 1.08/55 2.52±0.01
II Power law 2.25±0.41 - 0.80/56 0.09±0.02

and high photon index. The number of pulses with short lag is greater than the pulses
with long lag. The short lag pulses have a high luminosity and they are associated
with photon indexes close to 2. We suggest that gamma radiation should originate
from pulses with low photon index and short spectral lag, but in order to confirm the
emission mechanisms. Simulations of Inverse Compton like possible mechanism must
be performed in a future research.
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Abstract. Observations of X-ray binary systems provide strong evidences of
the existence of compact objects too massive to be explained by current neutron
star models. When these systems are in the thermal (high/soft) state their
emission spectra in the 0.1 − 5 keV range can be modeled by means of the
thermal radiation of an accretion disk formed around super-compact objects.
The profile of the fluorescent iron line is useful to get insight related with the
nature of the compact object.

In this work we developed a numerical scheme able to calculate thermal
spectra of magnetized Page-Thorne accretion disks formed around both rotating
black holes and naked singularities as seen by an arbitrary distant observer. We
incorporated two different magnetic field configurations: uniform and dipolar,
using a perturbative scheme in the coupling constant between matter and mag-
netic field. Under the same assumptions we obtained observed synthetic line
profiles of the 6.4 keV iron line.

We show that the presence of an external magnetic field produces potentially
observable modifications on both the thermal energy spectrum and fluorescent
iron line profile.

1. Introduction

Thermal spectra of X-ray binary systems in the (high/soft) state can be explained by the
emission of accretion disks formed around ultra-compact objects (McClintock et al.,
2006). Furthermore, the shape of the fluorescent iron line present on these spectra can
be useful to constrain physical parameters of these systems (Reynolds & Fabian, 2008).

Accretion disks and magnetic fields are two different phenomena intimately related
with ultra-compact objects. The structure of the magnetic field in the neighborhood of
the system formed by the compact object plus the accretion disk is extremely complex.
In a series of works that ended with Contopoulos & Papadopoulos (2012), the authors
proposed that the mechanism called the Poynting-Robertson Cosmic Battery (CB) could
be responsible of generating in situ and maintaining a central dipolar magnetic field.
Another viable magnetic field configuration is one that presents almost no changes
through the equatorial region where the disk develops.
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A central ingredient in simple models of accretion disks (Page & Thorne, 1974)
are circular equatorial geodesics. In Ranea-Sandoval & Vucetich (2014), the authors
investigated the effects caused on the circular trajectories of charged test particles by the
presence of an external magnetic field. In order to calculate these orbits around both
Kerr black holes (BHs) and naked singularities (NSs), they used a perturbative approach
on the coupling constant between the effective charge of the matter that forms the disk
and the magnetic field strength, λ.

Based on these results, in this work we introduce our study of the observed thermal
emission and line profiles produced by a magnetized accretion disk formed on a Kerr
spacetime with arbitrary spin parameter, a.

2. The model

Using the magnetic field solutions on a Kerr background (Petterson, 1975), we devel-
oped magnetized versions of Page-Thorne’s accretion disks under two different external
magnetic field configurations: uniform and dipolar. We assumed that the geometrically
thin but optically thick accretion disks extend from the innermost stable circular orbit,
risco, to rout = 11risco (Dove et al., 1997).

Once we obtained the structure of the disk, we calculated observed thermal energy
spectra and fluorescent Kα iron line profiles. We incorporated a ray-tracing technique
to evaluate the geodesics of photons between a plaque placed at observer’s position and
the surface of the disk where photons are emitted. For this purpose, we adapted the
public-code YNOGK (Yang & Wang, 2013), which includes all the relativistic effects
suffered by photons: Doppler boosting, gravitational redshift and gravitational light
bending.

3. Results

Using a perturbative approach we were able to analytically reproduce previously reported
numerical results for the radii of the most relevant circular orbits of charged particles
orbiting a Kerr BH with an external uniform and/or dipolar magnetic field, also extending
them to the super-spinning Kerr NS case. Our results are in agreement with those
obtained by Iyer et al. (1985); Prasanna & Vishveshwara (1978); Wiita et al. (1983) in
the weak coupling (λ ≪ 1) regime.

Assuming a black-body emissivity law, we calculated observed thermal energy
spectra for magnetized accretion disks. In Figure 1 we show non-absorbed thermal
energy spectra of a BH (black lines) and a NS (grey lines) considering non-magnetized
(λ = 0) and uniform (λU = 0.1) and dipolar (λD = 0.1) magnetized accretion disks.
Thermal emission from NS are harder and brighter than those from BH. The presence of
an external magnetic field modifies the shape of the spectra, peak intensities and cut-off
energies.

Now we focus on the effects caused by the inclusion of an external magnetic field
on the profiles of emission lines formed on the surface of the disk, assuming a power-law
emissivity r−p . First, in the top panels of Figure 2 we plot our results for the uniform
magnetic field configuration, considering λU = 0.05 and 0.1 (dashed lines), and fixing
p = 3 and i = 30◦. As a reference we also plot the non-magnetized case (solid lines).
From left to right we plot the line profiles obtained for a = 0.5, 0.99 and 1.2. For small
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Figure 1. Thermal spectra of magnetized accretion disks surrounding a BH
(a = 0.95) and a NS (a = 1.20) as seen by a distant observer with inclination
i = 80◦.
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Figure 2. Emission line profiles of magnetized accretion disks as seen by
a distant observer with inclination i = 30◦. Top (bottom) panels correspond
to uniform (dipolar) magnetic field configurations.

values of the spin parameter, a, accretion disks extend to outer regions where the effects
of the uniform magnetic field strongly affect the trajectories, and thus, the emission line
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profiles. On the contrary, as a grows, and the disks shrink, the effects become less
relevant, but still noticeable for these values of λU.

Secondly, in the bottom panels of Figure 2 we present, for the same parameters, our
results corresponding to the dipolar magnetic field configuration. In this case, contrary
to the uniform one, dipolar magnetic field dominates in the inner regions of the disks
and thus the major changes in the shape of the line profiles occur for values of a ∼ 1, as
risco → 1. This explains why line profiles of magnetized accretion disks for a = 0.5 are
almost indistinguishable from the non-magnetized case. As a grows, this characteristic
changes radically, and emission line profiles become more sensitive to the value of λD.
In the case of extremely spinning BHs, the effect of the dipolar magnetic field on the
line profile dominates in the red wings, while for NSs, the blue-shifted peak becomes
brighter.

Comparison between observational data from X-ray binary systems and our model
can be used as a tool to get insight regarding physical properties of the compact object
and also to probe cosmic censorship conjecture (Penrose , 1998) in astrophysical en-
vironments. Moreover our results can be implemented to estimate the magnetic field
strength and geometry in the neighbourhood of accretion disks.
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Abstract. We present a study carried out to determine variations in scales
ranging from hours to days, both in the total flux and optical linear polarization
in two blazars: 1959+650 and 2201+044. Both blazars are relatively nearby
active galactic nuclei, so their host galaxies are well resolved, having accurately
measured photometric parameters. This allowed us to apply models that take
into account the depolarizing effect introduced by the (un-polarized) light of the
galaxy, and, at the same time, to evaluate any spurious variation in polarization
time-curves due to variable seeing conditions, that affect differently the (point-
like) core and the (extended) host galaxy. Our results provide information on the
optical behaviour of high energy blazars, taking advantage of a scarcely explored
technique as optical polarimetry with high-temporal resolution.

1. Introduction

Blazars constitute the most extreme subclass of active galactic nuclei (AGN). We present
results from a study of two of them: 1959+650 and 2201+044. The first is a High-energy
peaked BL Lac (HBL), detected at TeV energies by HESS and Fermi-LAT, at redshift
z = 0.048, while the second is a Low-energy peaked BL Lac (LBL) at z = 0.027.
Isolated polarimetric measurements (P) can be found in the literature for both objects:
P = 2.92% for 1959+650, P = 1.1 − 1.5% for 2201+044; however these relatively
low polarization percentages have not been corrected by the effect of unpolarized host
galaxy light.

We report here the results obtained from our observational campaign designed to
study the polarized emission of blazars. These data will help us to understand the optical
variability of the polarized emission. In addition, we study the effects of the host galaxy
light on polarization measurements of blazars.

2. Observations

The instrument used for the study was the Calar Alto Faint Object Spectrograph
(CAFOS) in its imaging polarimetric mode, at the Calar Alto (Spain) 2.2 m teles-
cope.1 This instrument has a Wollaston prism plus a rotatable half-wave plate (Patat &
Taubenberger, 2011), producing two orthogonally polarized images, ordinary (O) and

1The observations were carried out in the framework of a collaboration with researchers from University of
Hamburg, Germany.
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Figure 1. Curve of the polarization degree 〈Pobs〉 as a function of the
photometric apertures. Left: 1959+650 Right: 2201+044.

extraordinary (E), of each object on the focal plane. In addition, a mask with alternate
blind and clear stripes is placed before the detector. This procedure improved the signal
to noise ratio (S/N), although half of the field is lost.

3. Analysis

We obtained the linear polarization and position angle (θ) for both blazars using equa-
tions that can be found in e.g. Lamy & Hutsemékers (1999). For each object in the field,
including the blazars, we computed the average polarization (Pobs) (in the Q, U plane)
for a 3 arcsec radius photometric aperture (which maximizes the S/N, see Howell 1989).
We estimated a value of the Galactic polarization (PGal) considering field stars with a
polarization vector almost parallel to each other and much smaller than the polarization
of the blazar.

Using a 3 arcsec aperture radius, we obtained 〈Pobs〉= 6.41 ± 0.26 % and 〈PGal〉 =
0.73 % for 1959+650 and 〈Pobs〉 = 0.16±0.28 % and 〈PGal〉 = 0.28 % for 2201+044. We
explored the depolarizing effect of the host galaxy by plotting Pobs against the aperture
radius (Fig. 1). As expected, the observed polarization decreases for large apertures,
for which the contribution of unpolarized flux from the host galaxy dominates. Note
that for 2201+044, while for the larger apertures its polarization is consistent with 0%,
a low but significant polarization (∼ 0.5%) is measured through the smallest aperture.

On the other hand, since the brightness distributions of the host galaxy and the
nucleus are different, any seeing variation will affect each component in different pro-
portions. Hence, spurious effects on the polarization variability may be induced by
changes in the atmospheric seeing, which affects the relative contribution of (partially
polarized) AGN and (unpolarized) host within the aperture. We checked for this ef-
fect by comparing the variations in time of the polarization with the behaviour of the
FWHM. No significant seeing-induced spurious variations in P were detected.
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Figure 2. Temporal behaviour of the degree of polarization P (blue) and
the α parameter (red). Left: 1959 +650. Right: 2201+044.

4. Results

The blazar 1959 +650 shows significant inter-night variability, while 2201 +044 seems
to be steady.

We modelled the flux distribution of the blazar+host and seeing (Andruchow et al.
2008) in order to estimate and subtract the depolarizing effect of the host galaxy, thus
recovering the intrinsic polarization of the blazar and, at the same time, removing any
spurious variability induced by seeing variations. The results are shown in Fig. 2, where
the α parameter quantifies the intrinsic polarization of the nucleus. On one hand, we
can see that for 1959 +650 α is ≈ 7% larger than P, while the former closely follows the
behaviour of the latter with time. This behaviour is expected since the FWHM remained
almost constant during the observations. On the other hand, for 2201+044, α departs
systematically from the curve corresponding to 〈Pobs〉. This can be explained because
this AGN was observed at the end of each night of observation, when the seeing was not
stable. Results for this object should be taken with care, and a more accurate modelling
of its host galaxy is needed to recover the nuclear polarization.

As an alternative approach in the case of 1959 +650, we use the total contaminating
fluxes (host galaxy + nearby companions) estimated by Nilsson et al. (2007) to obtain
the blazar’s polarization α, applying Eq. 1 from Andruchow et al. (2008):

Pobs[%] =
α FAGN

FAGN + FGal
, (1)

thus obtaining α ∼ 7.55%. This value is lower than that obtained by the model
(α = 11.94%), but this difference can be attributed to the fact that 1959 +650 is variable
and the magnitude of the blazar used in the model may not be the actual magnitude at
the moment of the observations.

5. Conclusions

We estimated the polarization degrees of the blazars 1959 +650 and 2201 +044. We
conclude that the HBL is a high polarization object, while in the case of the LBL under
study its polarization is close to zero. We analyzed the behaviour of the polarization
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degree as a function of the photometric apertures to check if there was any spurious
effect on the polarization variability due to atmospheric changes. Finally, we applied a
mathematical model with the aim to recover the intrinsic AGN polarization, and, at the
same time, remove any change in P induced by seeing variations.

On the one hand, for 1959 +650, for which the FWHM remained almost constant
during the observation, both the intrinsic (α) and observed (P) polarization degrees
follow the same behaviour. We also estimated a value of the intrinsic polarization using
the total contaminating fluxes (host galaxy + nearby companions) tabulated by Nilsson
et al. (2007). We obtained a lower value of intrinsic polarization as compared with the
model results, thus underlining the need to use accurate parameters for both AGN and
host in order to obtain reliable results. On the other hand, for 2201 +044, α departs
systematically from the curve corresponding to 〈Pobs〉. This can be explained because
this AGN was observed during the part of the night with less stable seeing.

As a general conclusion we stress that an accurate subtraction of contamination by
the host galaxy is very important for optical polarimetric studies of blazars, especially
for those detected at high-energies, because they are found at relatively low redshifts.
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H. M. M. Schmitt for their collaboration. This work was partially financed by PICT
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Abstract. The production of primordial gravitational waves (GWs) is dis-
cussed in the framework of a flat FRW cosmology with decaying vacuum energy
density. The gravitational wave equation is established and its time-dependent
part is analytically solved for different epochs. Unlike the standard ΛCDM cos-
mology (no interacting vacuum), we show that GWs can be produced during the
radiation era. However, high frequency modes are damped out even faster than
in the standard cosmology both in the radiation and matter dominated epoch.
The power and energy density spectrum generated at different cosmological eras
are also explicitly evaluated.

1. Introduction

The study of the primordial GWs is of great interest for cosmology since its possible
observation may provide fundamental informations about the physical conditions in
the very early Universe. Important clues about inflation, high energy physics and the
quantum gravity regime are expected from its direct detection. The generation of cos-
mological GWs was extensively studied since long ago by many authors (see Grishchuk
1993 for a review; also de Garcia Maia & Lima 1996). Here we focus on decaying
vacuum cosmologies where the Λ-term is a time dependent quantity, Λ = Λ(H ). The
interacting Λ(H ) models alleviate the cosmological constant and coincidence problems,
and some models are also in agreement with the available astronomical observations.
The kind of decaying vacuum energy density adopted here is also supported by dimen-
sional arguments and the renormalization group approach (Carvalho et al 1992; Lima
et al. 2013).

2. Cosmological gravitational waves

We are interested in the evolution of the GWs, i.e. tensor perturbations of the spacetime
itself. A classical tensor metric perturbation in FRW can be described as ds2 =
a2(η)[−dη2 + (δi j + hi j )dxidx j ] by satisfying the gauge conditions: |hi j | ≪ 1, h0µ =

hii = ∇jhi j = 0. At first order the equation of evolution of the tensor perturbation hi j is
given by (Tamayo et al. 2014):

h j
i

′′
+ 2

a′

a
h j
i

′ − ∇2h j
i = 0. (1)

Making the expansion
231
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hi j (η, x) =

√
16πG

(2π)3/2

∫
d3n

∑

r=+,×

r
ǫ i j (n)[

r
hn (η)ein ·x

r
cn + c.c]

we obtain:

r
hn (η)′′ + 2

a′

a

r
hn(η)′ + n2 rhn(η) = 0 (2)

⇒ r
µ
′′
+

(
n2 − a′′

a

)
r
µ = 0, rµn (η) = a(η)

r
hn (η).

The term V (η) = a′′/a is called the “potential” in analogy with the stationary Schrodinger
equation. It drives the evolution of the amplitude

r
hn(η) giving up the gravitational wave

amplification as described in figure 1. When the perturbations are quantized, all r
cn are

promoted to be the creation and annihilation operators, [ r
′

cn,
r

cm
†
] = δr ′rδ3(n − m),

thereby defining the vacuum state for a specific time and mode, r
cn |0〉n = 0. We do

not have an unique vacuum state because cn |0〉m , 0 (the index r was suppressed for
notation). Consequently we have particle (graviton) creation due the expansion of the
Universe because the number operator gives Nn |0〉m = c†ncn |0〉m , 0. With this we
can easily calculate the power spectrum of the GWs P(n, η) and the energy density
spectrum Ωgw(n, η):

P(n, η) ≡ d〈0|hi j (η, x)hi j (η, x) |0〉
d ln n

=
32G
π

n3 |hn (η) |2, (3)

Ωgw(n, η) ≡ 1
ρcrit

d〈0|ρgw(η) |0〉
d ln n

=
8πG

3H 2(η)

n3

2π2 ( |h′n(η) |2 + n2 |hn (η) |2). (4)

Figure 1. GW amplification. High frequencies, |a′′/a | ≪ n2 ⇒ µ ∝
e−inη i.e h ∝ a−1, the perturbations decay with the cosmic expansion. Low
frequencies |a′′/a | ≫ n2 ⇒ µ ∝ a i.e. h ∝ constant the perturbations
do not “feel" the cosmic expansion, this is the basic principle of the GW
amplification.
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Scale factor

Let us now consider a decaying vacuum cosmology driven by Λ(H ) = Λ0 + 3βH2. By
using the equation of state, p = ωρ, one may show that the evolution equation for the
scale factor reads:

aa′′ + (∆ − 1)a′2 − 1 + ω
2
Λ0a4 = 0, ∆ =

3(1 + ω)(1 − β) − 2
2

. (5)

At early times, the term involving Λ0 in the above equation of motion can be
neglected. So, by integrating it, we find that the solutions of the scale factor for the
different cosmic eras (inflation, radiation & Matter) can be written as:

a(η) =


−liη−1, η ≤ η1 η < 0, inflation
lia0r (∆radη − ηrad)1/∆rad, η1 ≤ η ≤ ηeq, radiation

lia0m (∆matη − ηmat)1/∆mat, η ≥ ηeq, matter
(6)

Figure 2. Left: Evolution of the scale factor a(η) for some selected values
of β, the expansion rate is faster for higher values of β. Right: of β, note that
V = 0 only for β = 0.

3. Results

The inflation era is independent of β so that we have the well-known solution µinf =
e−inη√

2n
(1 − i

nη ). However, new results are present during the radiation and matter era.
The main result is that in the radiation era we have V = 2β a′a . Therefore, unlike in
the standard ΛCDM model, where V = 0 (see Figure 2), we obtain that for β , 0 the
GW amplification occurs even during the radiation phase. In Figures 3 and 4 we show
the behavior of the modulus of the perturbations |h | in the radiation and matter era.
Finally, in Figures 5 and 6, the results for the power and energy density spectra are also
presented.
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Figure 3. Left: |hrad | as a function of the conformal time for some values
of β and a fixed n = 10. Right: |hrad | for high frequency n = 105. In the
low frequency regime the decaying vacuum amplify the perturbations since
the amplitude is higher in comparison to the case β = 0. The high frequency
modes are always damped out regardless of the value of β.

Figure 4. Left: |hmat | as a function of the conformal time for some selected
values of β and a fixed n = 1. Right: |hmat | for a high frequency, n = 104.
We have the same features of the radiation era.

4. Basic conclusions

• In decaying Λ models, the GW amplification (graviton creation) can occurs even
during the radiation era. In general, forΛ(t)-models, the “Schrodinger potential”,
V (η) = a′′/a, is usually different from zero.

• For a Λ = 3βH2 model discussed here, the graviton production is also a low
frequency phenomenon.

• For de Sitter inflation, ω = −1, the initial spectrum is independent of the parameter
β.

• The amplitude, power spectrum and energy density of cosmological GWs were
explicitly calculated and compared with the standard case (β = 0).

Acknowledgments. DT and JASL are grateful to CAPES and CNPQ (Brazilian
Research Agencies), respectively.
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Figure 5. Left: Prad as a function of n for a fixed time. The spectrum
is practically flat until some transition frequency when begins to decrease
being slightly larger as β increases. Λ(t) contributes to the creation of low-
frequency gravitons. Note that after some β-dependent transition frequency
the waves are strongly damped. This means that the decaying vacuum in this
regime contributes more to increase the scale factor than to the production
of gravitons. Right: Pmat as a function of n for a fixed time. With the
same high and low frequency general properties of the radiation era, it starts
with an almost flat spectrum and also decreases faster as long as the vacuum
contribution is relatively larger (higher values of β).

Figure 6. Left: Ω(rad)
gw as a function of n for a fixed time. If β1 > β2

then Ω(rad)
gw (β1) < Ω(rad)

gw (β2) for all frequencies. Ω(rad)
gw grows as a power-law

being weakly dependent on the value of β, but a more strong dependence
is obtained at the high frequency limit. Right: Ω(mat)

gw follows a similar
trends, if β1 > β2 then Ω(mat)

gw (β1) < Ω(mat)
gw (β2), with some peculiarities

at the high frequency limit where the spectrum always decreases but varies
differently in function of β. The basic reason for such a behavior is because
when |h′ |2 ≪ |h |2 the energy density spectrum is Ωgw ∝ n5 |h |2H −2, where
H = a′/a (see expression (4) for the power-spectrum). At this limit, the
factorH −2 determines the behavior of Ω(mat)

gw .
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Abstract. We explore the feasibility of estimating primary cosmic ray com-
position at high energies from the study of two parameters of Extensive Air
Showers (EAS) at ground and underground level with Monte Carlo simulations
using the new EPOS and QGSJETII hadronic models tuned with LHC data.
Namely, the slope and density at a given distance of the muon lateral distribution
function are analysed in this work. The power to discriminate primary masses
is quantified in terms of merit factor for each parameter. The analysis considers
three different primary particles (proton, iron and gamma), four different zenith
angles (0◦, 15◦, 30◦ and 45◦) and primary energies of 1017.25 eV, 1017.50 eV and
1017.75 eV.

1. Introduction

The particle lateral distribution of EAS is the key quantity for cosmic ray ground obser-
vations at energies greater than 1015 eV, from which most observables are derived. An
EAS is initiated by a high energy cosmic ray interacting in the top of the atmosphere
and creating a multitude of secondary particles, which arrive at ground nearly at the
same time. Secondary particles are distributed over a large area perpendicular to the
direction of the cosmic ray primary. The disc of secondary particles may extend over
several hundred meters from the shower axis, reaching its maximum density in the
center of the disc, which is called the shower core. The density distribution of particles
within the shower disc can be used to derive information on the primary particle. EAS
measurements at ground level are carried out using arrays of individual detectors, which
take samples of the shower disc at several distances from the shower core [1].

It is known that the muonic component of EAS carries information about the
identity of the primary particle [2]. In this work we study two parameters sensitive
to primary masses: the slope of the Muon Lateral Distribution Function (MLDF) and
the density of muons at a certain distance from the core. The underlying idea is that
showers originated by heavy nuclei produce more muons than lighter ones (therefore the
absolute muon density at fixed distance will be higher for heavy nuclei) but the MLDF
will be less steep. For the presented analysis the response of any detector is not taken
into account.
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2. Monte Carlo simulations

For this work we generated a library of EAS using AIRES 2.8.4a [3] which make use
of QGSJET-II-03 [4] as hadronic model and CORSIKA 7.3700 [5] which make use of
QGSJET-II-04 [4] and EPOS-LHC [6] as hadronic models. In both programs, we set a
statistical thinning of 10−6 . For each hadronic model we consider three types of primaries
(proton, iron and gamma), four zenith angles (0◦, 15◦, 30◦ and 45◦) and three energies
(1017.25 eV, 1017.50 eV and 1017.75 eV). For each energy, zenith angle and primary type
a total of 120 showers were produced, considering an uniform azimuthal distribution
between 0◦ and 360◦. During the EAS simulations only muons with energies above 55
MeV have been taken into account to assess the MLDF at different depths between 0
and 2.5 m using the same set of showers.

3. β and ρµ (500) parameters

Once the EAS is simulated, the muon lateral density is fitted event-by-event with a
KASCADE-Grande like MLDF [7] :

ρµ (r) = Nµ

(
r
r0

)−α (
1 +

r
r0

)−β *,1 +
(

r
10r0

)2+-
−γ
, (1)

where r is core distance in the shower plane. The values of α, γ and r0 are fixed in 0.75,
3 and 320 m, respectively, and Nµ and β are the free parameters.
The MLDF is simulated at ground with AIRES and CORSIKA and afterwards propa-
gated underground. In the last case, two depths have been used: 1.3 m and 2.5 m. The
layer of soil is used as a shielding against the electromagnetic component of the EAS,
allowing only the muons of energy greater than 0.52 and 1 GeV to arrive to the desired
depths respectively. For each event simulated, β and ρµ (r = 500) are obtained from
Eq. (1). For the energies considered, the distance of 500 m is close to the distance
where the fluctuations over the MLDF are minimized if the any detector response is not
taken into account. However, Fig. 1 (Right) show a wide range in distance with similar
fluctuations values.

4. Muons propagation through the soil

Muons lose a fraction of their energy when they propagate through the soil, mainly due
to ionization. Therefore, we assume as a first-order approximation that the energy loss
is proportional to the muon track length and constant with energy. Then the energy of a
muon that traveled a distance x through the soil is: Eµ(x) = Eµ0 − αρx, where Eµ0 is the
initial energy of the muon, ρ = 1.8× 106 g m−3 is the density of a soil with standard rock
and α = 1.808 × 10−7 GeV m2 g−1 is the fractional energy loss per grammage depth. As
an example, in Fig. 1 we show a fit of the muon lateral density for one vertical proton
with energy of 1017.75 eV and QGSJET-II-03 hadronic model. In this case, the slope
values were β = 2.44 ± 0.38, β = 2.67 ± 0.43 and β = 2.93 ± 0.49, and the density values
were ρµ(500) = 0.81 ± 0.12 m−2, ρµ(500) = 0.62 ± 0.09 m−2, and ρµ(500) = 0.48 ± 0.07
m−2, for ground, 1.3 m and 2.5 m underground, respectively.
In order to validate the first-order approximation, we use the GEANT4 package to
perform a complete simulation of particles arriving to different depths. The results are
equivalent because the ionization is the main process of energy loss.
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Figure 1. Left: MLDF of one vertical proton of 1017.75 eV at different soil
levels. The muons propagation was performed using the firs-order approxi-
mation. Right: The mean spread in ρµ (r) for 120 showers initiated by proton
with energy of 1017.50 eV and zenith angle of 30◦.

5. Data Analysis

In order to quantify the discrimination power of β and ρµ (500) parameters, we con-
structed the distributions of these two parameters for each primary type, energy and
zenith angle, at ground and underground levels, respectively. As an example, in Fig. 2
the distributions of β and ρµ (500) are shown for E = 1017.75 eV and zenith angle 0◦.
The power of discrimination is measured calculating the Merit Factor (MF) between
the distributions defined as: MF = |〈A〉 − 〈B〉|/

√
σ2
A
+ σ2

B
, where 〈A〉 and 〈B〉 are the mean

values of the A and B distributions, and σA and σB their respective standard deviations
(because no detector is considered in this work, these fluctuations correspond only to
shower-to-shower fluctuations). MFs lower than 1 indicate very poor discrimination
power (roughly because mean values are less than 1σ apart from each other).
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Figure 2. Left: β parameter distributions corresponding to 120 vertical
EAS at ground and 2.5 m underground levels, with energy of 1017.75 eV and
QGSJET-II-03 hadronic model. Right: The same for ρµ (500) parameter
distributions.

6. Merit factor and primary mass discrimination

The MFs dependence with energy, hadronic model and zenith angle was the main goal
of this work. In Fig. 3 we show the results for case of 2.5 m underground. From both
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plots it can be seen that the discrimination power of β is not very good. On the other
hand, ρµ (500) shows a MF greater than 2 and is practically independent of the energy
and zenith angle. Therefore this parameter has the potential to discriminate the mass of
primaries cosmic rays. A similar behavior was seen at 1.3 m underground level.
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Figure 3. Merit factor of the ρµ (500) and β parameter at 2.5 m under-
ground level as function of primary energy and zenith angle. Left: For
Gamma and Proton. Right: For Proton and Iron.

7. Conclusions

In this work we performed a study of the merit factor of β and ρµ (500) parameters
obtained from MLDFs. We used proton, iron and gammas as primary cosmic ray,
three hadronic models and different ground levels. The muons propagation through of
soil was performed using an approximation which only took into account the continual
energy loss. For energies and zenith angles studied, the β parameter has a merit factor
≤ 1, and therefore it is not a good mass discriminator, while the ρµ (500) parameter has
a merit factor > 2 (if Poissonian fluctuations are not taken into account). In each case,
the merit factor does not show a significant difference with the three hadronic models
considered.

References

[1] Letessier-Selvon, A. & Stanev, T. 2011, Rev. Mod. Phys., 83, 907
[2] Supanitsky, A. D. et al. 2008, Astropart. Phys., 29, 461
[3] Sciutto, S., “AIRES user’s Manual”, http://www.fisica.unlp.edu.ar/auger/aires.
[4] Ostapchenko, S. 2011, Physical Review D, 83, 014018
[5] Heck, D. et al. 1998, “CORSIKA: a Monte Carlo Code to Simulate Extensive Air

Showers”, FZKA, 6019
[6] Pierog, T. et al. 2013, arXiv:1306.0121 [hep-ph]
[7] KASCADE-Grande Collab. 2005, Proc. 29th ICRC, 6, 301



Gravitation, Relativistic Astrophysics and Cosmology
Second Argentinian-Brazilian Meeting, 2014
G. S. Vila, F. L. Vieyro and J. Fabris, eds.

Inflation in inhomogeneous spacetimes: bubble evolution

Florencia A. Teppa Pannia1,2 and Santiago E. Perez Bergliaffa3

1Instituto Argentino de Radioastronomía (CCT La Plata, CONICET), C.C.5,
(1894) Villa Elisa, Buenos Aires, Argentina
2Facultad de Ciencias Astronómicas y Geofísicas (UNLP), Paseo del Bosque
S/N, B1900FWA La Plata, Argentina
3Departamento de Física Teórica, Instituto de Física, Universidade do Estado
de Rio de Janeiro, Brazil

Abstract. The evolution of a vacuum bubble embedded in an inhomogeneous
spacetime is relevant for the modelling of inflation in the presence of inho-
mogeneities. We developed a numerical scheme based on Israel’s matching
conditions to solve the evolution of the bubble for spherically symmetric inho-
mogeneous backgrounds. Particular attention is paid to spacetimes with perfect
fluid with non-zero pressure as a source, which are described by Lemaître so-
lution of Einstein’s equations. As a previous step that serves as a check of the
numerical scheme, we present here the case of a bubble evolving in a FLRW
metric with radiation as a source.

1. Motivations

Although inflation is specifically designed to solve some of the problems of the standard
cosmological model, it is not free of its own problems. Among these, perhaps the
most relevant ones are those related to the beginning of inflation in the presence of
inhomogeneities, and the evolution of an inflating region in an inhomogeneous ambient.
Regarding the first problem, numerical (Goldwirth & Piran, 1989) and analytical (Perez
& Pinto Neto, 2011) studies show that spacetime has to be homogeneous and isotropic
to a high degree for inflation to start. Regarding the second problem, an inflating region
may stop inflating in particular ambient spacetimes, as discussed in (Fischler et al.,
2009; Rakic et al., 2009) for the FLRW and LTB cases.

The question of whether an inflating region can continue to inflate if the ambient
region is inhomogeneous has been explored by several authors for different backgrounds
(Goldwirth & Piran, 1989; Fischler et al., 2009; Rakic et al., 2009). In all these cases,
the inflating region was modelled by a vacuum bubble, separated from the exterior by a
thin wall. The results show that the presence of matter slows down (and may even stop)
the expansion of the bubble. An inhomogeneous outer spacetime was only studied for
spherically symmetric dust (Fischler et al., 2009; Rakic et al., 2009), which is a first
step aiming at a more realistic description in terms of ultrarelativistic matter. We intend
here to undertake this latter task.

2. General framework

A propagating bubble divides the space-time into three regions:
241
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1. The inner region, which is described by a de Sitter spacetime in the case at hand.

2. The bubble, which is assumed to be a thin-shell, with a perfect fluid energy-
momentum tensor with an equation of state (EoS) given by P = wσ. It is
described by the hypersurface Σ with geometry

ds2 |Σ = dτ2 − ρ2(τ)dΩ2. (1)

3. The background, which will be assumed to be spherically symmetric and filled
with a perfect fluid with non-zero pressure (Tµν = (ǫ + p)uµuν − pgµν). This back
is described by Lemaître’s solution of Einstein’s equations, which in comoving
coordinates takes the form

ds2 = eA(t,r )dt2 − eB(t,r )dr2 − R(t, r)2dΩ2. (2)

Einstein’s equations for this geometry are given by

κR2R,r ǫ = 2M,r (3)
κR2R,t p = −2M,t, (4)

where M (t, r) is defined by

2M = R + Re−AR2
,t − e−BR2

,r R − ΛR3/3. (5)

Using the conservation of Tµν , we obtain

A,r = −2p,r/(ǫ + p) (6)

eB =
R2
,r

1 + 2E
exp

(∫ t

t0

2R,t

[ǫ + p]R,r
p,rdt̃

)
, (7)

where E(r) is an arbitrary function related to the local curvature (Bolejko et al.
2006). Note that in the case of dust, the above equations reproduce the LTB
model, where eA = 1 and eB = R2

,r/(1 + 2E). The FLRW limit is obtained when
R(t, r) → a(t)r, M → M0r3 and E → E0r2.

3. Numerical scheme

In order to describe the evolution of the bubble we use the general thin-wall formalism
based on the Israel’s junction conditions (Israel, 1966; Berezin & Kuzmin, 1987;
Visser, 1996). They relate the discontinuity in the extrinsic curvature to the energy-
momentum tensor of the bubble across the hypersurface Σ which separates two given
spacetimes. The outer coordinates are related to the comoving time of the bubble by
dτ2 = eAdt2 − eBdr2. Since the coordinates r and t are both functions of τ on the shell,
the evolution of the radius of the bubble ρ(τ) can be parameterized by the function
r̃ = r (t) |shell , with ρ(τ) = R(t, r̃ (t)).

The equations that govern the evolution of the radius and the density of the bubble
are

(dr̃
dt

)2
(R,r̃2 + eB (R2C2 − 1)) + 2R,t R,r̃

(dr̃
dt

)
+ R2

,t − eB (R2C2 − 1) = 0, (8)
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dσ
dt
+

2R,t

R
σ(1 + w) −

[
eA/2eB/2(ǫ + 3p)

(dr̃
dt

)] /√
eA − eB (dr̃/dt)2 = 0, (9)

where

C2 =
Λin

3
+

[
σ

4
+

1
σ

(
Λout − Λin

3
+

2M

R3

)]2
.

These expressions depend on the background geometry and are general in the sense
that they can be used for FLRW, LTB or Lemaître backgrounds by calculating the
corresponding metric functions A and B, and using a proper EoS for the perfect fluid
on the shell.

The evolution of a bubble of vacuum on a background with a non-zero pressure
fluid and non-zero Λ will substantially depend on the pressure balance and on the
relation of the surface tension to the difference in inner and outer Λ, and dust density
(Rakic et al., 2009). This can be seen from the equation for the acceleration of the radius
of an initially comoving bubble, which in the FLRW case is given by

r̈ |ṙ=0 =
1
a

(
Λout − Λin

24πσ
− 2πσ − 2ρ + αp

3σ

)
, (10)

where α is a numerical coefficient. It follows from this equation that both the density
and the pressure of the external fluid tend to slow down the expansion of the bubble.

4. Results and discussion

We obtained a system of ordinary differential equations which determines the evolution
of the shell based in the Israel’s junction conditions. These general expressions allow
us to analyze several combinations of background metrics and/or matter content, and
different EoS for the matter on the shell.

A numerical scheme was developed to solve the problem for different choices of the
initial conditions and the parameters which describe the shell and the background. The
goal of the analysis is to determine if the outer non-zero pressure fluid can slow down
the bubble and eventually stop the inflation of the vacuum region in inhomogeneous
backgrounds. We will also investigate if the external inhomogeneities leave any traces
in the region contained in the bubble.

The case of an homogeneous background with radiation fluid as a source is pre-
sented as an example. The outer FLRW metric is described by Λ = 3 × 10−5, curvature
function E(r) = −kr2 with k = 4 × 10−6, ρrad = A/a4 (t) with A = 1 × 10−3, and the
initial condition a0 = 1. The evolution of the radius of the bubble for several initial
sizes and different choices of the EoS is shown in Fig. 1. As a test for our code, and for
comparison with the radiation case, the curves for the dust case presented in Fischler
et al. (2009) are also displayed in the Figure. The plots show that the evolution of the
bubble when pure radiation is considered is qualitatively the same as in the case of pure
dust.

We are presently exploring the evolution of the bubble for different curvature pro-
files for inhomogeneous backgrounds described by the Lemaître metric (i.e. spherically
symmetry and non-zero pressure perfect fluid as a source). We are also deducing a
theoretical expresion for the acceleration of the bubble, that will generalize Eq. (10) in
order to gain insight on the role of the density and pressure in the evolution equations.
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Figure 1. A closed FLRW background with perfect fluid as a source that
will eventually asymptote to a de Sitter spacetime is considered. Solid and
dashed lines indicate, respectively, the pure radiation and the pure dust cases.
The two panels show the evolution for different initial radius of the bubble
(r̃0 = 10, 100, respectively). The initial density of the shell is σ0 = 1 × 10−3

and several values of the parameter w of the EoS are considered. Qualitatively,
the asymptotic behaviour of the comoving bubble coordinate r̃ (t) does not
depend on the initial conditions or on the EoS of the bubble.
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Abstract. After the so-called cosmic recombination the expanding universe
entered into a period of darkness, since most of the matter was in a neutral
state. However, about a billion years later the intergalactic space was once again
ionized. The process, known as the cosmic reionization, required the operation
of mechanisms that are not well understood. Among other ionizing sources,
Population III stars, mini-quasars, and X-ray emitting microquasars have been
invoked. All these models relay on the ionizing power of photons. But what
about charged particles?. In this contribution we quantify the ionization power
of cosmic rays (electrons and protons) in the primordial intergalactic medium.

1. Introduction

Around 380000 yr after the Big Bang, the combination of protons and electrons formed
neutral gas allowing the radiation to decouple from matter. The universe entered then in
a “dark age", that lasted up to about a billion years (e.g., Ellis, Maartens & MacCallum
2012). How the universe was reionized is a major topic in current cosmology. The
formation of the first stars of zero metallicity, at redshift z ∼ 20, resulted in the
injection of a large number of ultraviolet (UV) photons (e.g., Loeb 2010). However, it
seems difficult for these photons to interact with neutral gas at large distances from the
stars, given the high-column densities of the primordial star-forming clouds. Recently,
Mirabel et al. (2011) have proposed that X-rays from accreting black holes in early
binary systems might have played a crucial role, because of the longer mean free path
with respect to the UV radiation.

The first generations of microquasars should have not only produced copious X-
rays, but also relativistic particles through their jets. Moreover, unlike the X-rays from
the disk that are injected in the vicinity of the star, the jets can propagate hundreds of
parsecs and escape the original cloud where the star formation took place. Once the
jets were in what would become into the intergalactic medium, the termination shocks
can re-accelerate protons and electrons up to relativistic energies. Then, these particles
would diffuse, ionizing the medium they encountered. In this contribution we offer a
quantitative estimate of the ionizing power of these particles as they diffused through
the early universe.

In the next section we describe the simulations of cosmic ray (CR) propagation in
the early universe. Then, in Section 3 we discuss the obtained results. We close with
implications of our results in Section 4.
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2. Simulations

In order to estimate the ionization power of electrons and protons injected directly into
the intergalactic medium (IGM) we have used a heavily modified version of the AIRES
code (see AIRES Manual). AIRES is a particle cascade simulation suite originally
designed to simulate particle cascades initiated by CRs on Earth’s atmosphere. We have
modified AIRES propagation routines to simulate the conditions of the primigineous
IGM. We have added a redshift-dependent monochromatic photon field to simulate
the cosmic microwave background (CMB) and a material medium of hydrogen atoms
with redshift-dependent number density. We added inverse Compton scattering and e±
photo-pair production for electrons, positrons and photons. Neutron decays have been
also included.

When a particle cascade develops, most of the ionization in the traversed medium
is produced by low energy particles, especially electrons and photons in and below
the keV energy range. Unfortunately, the full simulation of all processes leading to
particles in and below the keV range would require humongous amounts of CPU time.
To circumvent this problem, the generation of particles below a certain threshold (100
keV for electrons and photons, and 500 keV for other particles) has not been directly
simulated. Instead, the generation of low energy particles is represented by an averaged
energy loss per amount of traversed matter, that has been subtracted from all charged
particles during their propagation.

As low energy particles lose most of their energy through ionization, the subtracted
energy has been considered to be ultimately deposited in the traversed medium through
ionization. The number of ions that would have been generated by these low energy
particles can then be estimated using the mean energy loss per ionization event IH. We
take IH to be ≈ 36 eV, considering that 10.2 eV goes to ionize the atom and ≈ 25.8 eV
corresponds to the average kinetic energy of the outgoing electron, of which 22.3 eV are
lost in exitations of atomic levels and 3.4 eV in heating of the gas (Spitzer & Tomasko
1968).

To further speed up the simulations, we have discarded particles that fell below
the low energy threshold during their propagation. The energy carried away by these
particles has also been considered to be ultimately deposited in the medium through
ionization.

The IGM has a redshift dependence. We have adopted a density of the primordial
IGM of nH = 2.5 × 10−30 (1 + z)3 g cm−3 (e.g., Ellis et al. 2012). The CMB has been
considered monoenergetic with photon energy ECMB = 3.75 × 10−4(1 + z) eV, and a
photon density uCMB = 0.05 (1 + z)3 cm−3. For the magnetic field of the IGM we
have taken the value B = 10−17 G (e.g., Stacy & Bromm 2007; Loeb 2010; Bromm
2013). The model we have used for the evolution of the universe is that of the standard
spatially-flat six-parameter ΛCDM cosmology, with a Hubble constant H0 = 67.3± 1.2
km s−1 Mpc−1 and a matter density parameter Ωm = 0.315 ± 0.017, in accordance with
latest results from the Planck Collaboration (2014).

Under these assumptions, simulations of electrons in the 1 MeV - 100 TeV and
protons in the 1 GeV - 100 TeV energy range have been generated. Particles start at
redshift z = 19 and they are propagated through the IGM until they reach z = 5, the
epoch at which the reionization is considered to be complete (Loeb 2010). During this
lapse, particles traverse up to ∼ 3.1 g cm−2 of matter.
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Figure 1. (left) Average longitudinal development of electrons and (right)
total ionization power of particles injected in the IGM at redshift z = 19 and
propagated through redshift z = 5

3. Results

Our simulations for electrons primaries show that below the energy threshold for inter-
actions with the CMB, - roughly 1 GeV - no particle cascades are produced. An example
of the average longitudinal development of 10 MeV electrons is shown in Figure 1 (left).
At these energies, electrons propagate loosing their energy mainly by ionization of the
hydrogen atoms they encounter on their path.

Electrons below 10 MeV loose all their energy in the IGM before the reionization
epoch ends, producing a number of ionizations (i.e. an ionization power) proportional
to their initial energy. This is evidenced as a unitary slope in the low energy end of Fig.
1 (right).

Above 10 MeV, electrons survive the reionization epoch, as can be seen on the
average longitudinal profile for 100 MeV electrons shown in Fig. 1 (left). This gives a
plateau in the ionization power for electrons between 10 MeV and 1 GeV seen in Fig. 1
(right). The energy deposited through ionization by a single particle for a fixed amount
of traversed matter has little dependency on its energy.

Once the energy of the primary electrons reach the threshold of inverse Compton
with the CMB, particle cascades start being generated. The number of particles quickly
rises and so does the total energy lost through ionization. At some point these particles
start having enough energy to survive the reionization epoch. This gives the second
plateau in Fig. 1 (right).

A second sudden but smaller rise in the ionizing power is produced when secon-
daries also reach the CMB interaction threshold, triggering more cascades. An example
of this type of cascades is given in Fig. 1 (left) for 10 TeV electrons, where it can be
seen that the number of electrons and the energy they carry continues to rise, in contrast
with the 100 GeV case.

For proton primaries we started our calculations at 1 GeV. At these energies protons
have a big variability in their ionization power as the 3.1 g cm−2 of traversed matter is
well below the mean free path of p− p interactions. Protons that do not interact survive
the reionization epoch and deposit very little energy, giving a small ionization power.
Protons that do interact generate pions that promptly decay into muons, electrons and
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photons that in turn generate cascades that do have a big ionization power. This yields a
big variability in the ionization power of protons, specially at low energies, and a slope
lower than 1 in the ionization power as can be seen in Fig. 1 (right).

4. Conclusions

Only low energy lectrons have a ionization power per unit energy comparable with UV
or X-Ray photons, i.e. in the order of 20 ionizations per keV. However, microquasar
jets inject particles with a power law spectrum making low energy particles dominate
the microquasar total ionizing power. Furthermore, these particles would be injected
directly into the IGM, bringing directly where UV photons cannot reach. The contri-
bution from protons would be a hundred times lower, but their bigger gyroradius make
them diffuse faster and deeper into the IGM.
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