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Abstract. In this paper we study the orbital behavior in the neighbor-
hood of simple unstable periodic orbits in a 3D rotating galactic potential.
We use the method of color and rotation to visualize the 4D spaces of sec-
tion. We found four types of structures in the 4D space of section that
correspond to four types of orbits. The first three types are sticky chaotic
orbits and in the last one the orbit visits all available phase space.

1. Introduction

In this paper we give a short review of recent results from studies about the
structure of the phase space in the neighborhood of simple unstable periodic
orbits in a 3D autonomous hamiltonian system of galactic type (Katsanikas
et al. 2011b). In 3D autonomous hamiltonian systems the phase space is six
dimensional and the space of section is 4D. For this reason we use the method of
color and rotation to visualize this space (Patsis & Zachilas 1994). By using this
method we first consider 3D projections and rotate the 3D figures on a computer
screen to observe the figure from all its sides. Every point is colored according its
value in the 4th dimension. The smooth color variation corresponds to ordered
behavior and the mixing of colors to chaotic behavior in the 4th dimensional
space.

For the study of stability of periodic orbits we use the method of Broucke
(1969) and Hadjidemetriou (1975). According to this method we compute firstly
the elements of the monodromy matrix of our 4D Poincaré map. Using the ele-
ments of the monodromy matrix, we find four types of periodic orbits according
to their stability: (1) stable (2) simple unstable (3) double unstable and (4)
complex unstable (Contopoulos $ Magnenat 1985, Contopoulos 2002 p.286). We
study here the case of simple instability. In this case the periodic orbits have
two complex eigenvalues of the monodromy matrix of our 4D Poincaré map that
are on the unit circle and two real eigenvalues that are off the unit circle.

The system that we used for our applications is the one used by Katsanikas
$ Patsis (2011) with Ωb = 0.045 in our units. Our potential in its axisymmetric
form can be considered as an approximation of the potential for the Milky Way
(Miyamoto $ Nagai 1975).
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2. 4D surfaces of section

We examine first the different types of orbital behavior in the neighborhood
of simple unstable periodic orbits. In previous works Magnenat (1982) found
orbits that are represented with double loops in the 2D projections of the 4D
space of section in the neighborhood of simple unstable periodic orbits. Here we
study the morphology of these double loops in the 4D space. Besides this type
of orbits we found totally four types of orbital behavior in the neighborhood
of simple unstable periodic orbits. The first three types are associated with
the phenomenon of stickiness (Contopoulos $ Harsoula 2008). In these three
types the chaotic orbits are guided by the manifolds close to the regions that
are occupied by the rotational tori (Vrahatis et al. 1997, Katsanikas and Patsis
2011) associated with the stable periodic orbits existing in the region. All of
them are associated with motion close to a transition of a mother family from
stability to simple instability or vice versa. The fourth type of orbital behavior
(last type) is associated with orbits that visit very fast all available phase space.

The four types are represented in the surface of section from four different
types of structures in the 4D space of section:

1. The first type is represented by a double loop with smooth color variation
(as in the example of Fig. 1). The smooth color variation means that the
4th dimension supports this 3D topological surface (double loop in the
3D subspace of our 4D space of section) in the 4D space. This means
that the double loop is a 4D object. At the intersection of the double
loop we can see the meeting of different colors (red with violet). This
indicates that this intersection does not exist in the 4D space. The previous
structure is encountered for a specific number of intersections. For a larger
number of intersections we observe that the consequents form a Θ-like
structure with mixing of colors (like the Fig. 2). For even larger number of
intersections the consequents leave this structure and form clouds of points
that correspond to motion in a chaotic sea.

2. The second type is represented only by a Θ-like structure with mixing of
colors (like the Fig. 2) for a number of intersections. For larger number of
intersections we have again as in the first type of orbits the formation of
clouds of points.

3. The third type of orbits (Fig. 3) is represented by a double loop with
smooth color variation as the double loop of the first type of orbits. How-
ever, in this case we have a difference. The region of the intersection of the
double loop has now the same color (green - Fig. 3). This means that this
intersection is a real 4D intersection. This difference reflects properties of
the family of periodic orbits under consideration (e.g. lack of a symmetric
family with respect to the equatorial plane).

4. The fourth type of orbits correspond to motion in a chaotic sea. The
chaotic sea is represented in the 4D surface of section with clouds of points
with mixing of colors. The mixing of colors means that the scattered points
are not only in the 3D subspaces of the space of section but are scattered
in the 4D space. This means that these clouds are 4D.
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Figure 1. An orbit that is represented by a double loop with no real in-
tersection for 2580 consequents in the 4D space of section. This orbit is in
the neighborhood of a simple unstable periodic orbit of x1v2 for Ej=-4.66
(Katsanikas et al. 2011b). The consequents are given in the (x, ẋ, z) projec-
tion, while every point is colored according to its ż value. We observe that a
double loop ribbon is formed with a smooth color succession on it (cf. with
the color bar on the right). Our point of view in spherical coordinates is
(θ, ϕ) = (30o, 108o).
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Figure 2. Mixing of colors for the first 1000 consequents of the orbit in the
Fig. 1 (beyond the first 2580 consequents) that deviate from the 4D ribbon
surface. The 3580 points totally are depicted in the 3D subspace (ẋ, z, ż) and
the color represents the 4th dimension x of the points. Our point of view in
spherical coordinates is (θ, ϕ) = (120o, 0o).
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Figure 3. An orbit that is represented by a double loop with real intersection
in the 4D space of section. This orbit is in the neighborhood of a simple
unstable periodic orbit of z-axis family for a slow pattern model of our system
Ωb = 5 × 10−6 for Ej=-6.6342 (Katsanikas et al. 2011b). Thus, we consider
now the z = 0 surface as surface of section with ż > 0. The consequents
are given in the (x, ẋ, y) projection, while every point is colored according to
its ẏ value. We observe that a double loop ribbon is formed with a smooth
color succession on it. Our point of view in spherical coordinates is (θ, ϕ) =
(60o, 60o).
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The results about the 4D structure of phase space close to a periodic orbit
have been presented in a recent series of papers (Katsanikas & Patsis 2011,
Katsanikas et al. 2011a,b, Katsanikas et al. 2011c, Katsanikas 2011).
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