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Abstract. A very important topic in galactic dynamics is the detection
of instabilities of a given system and the possible appearance of chaos.
Such a chaotic bahaviour can be detected and studied by means of vari-
ational chaos indicators (CIs). The CIs are based on the study of the
evolution of initial deviation vectors, which makes these techniques spe-
cially sensitive to indicate the presence of chaos. Notwithstanding their
special sensitiveness to identify chaos, the CIs are still good alternatives
to determine also the resonance web.

On the other hand, the so-called spectral analysis methods are based
on the study of some quantity (e.g. the frequency) on a single orbit, which
turns these techniques very efficient for the determination of the resonant
structure of the system.

The analysis of the interaction among chaotic and regular compo-
nents as well as the determination of the resonant structure of the Hamil-
tonian leads to a deeper understanding of the system’s dynamics. Despite
the advantages of the simultaneous application of both types of tech-
niques, many researchers keep applying only one of them.

Herein, we present an alpha version of a program coded in Fortran,
the LP-VIcode. Although the code is in a developing stage, it can com-
pute several CIs, and here we apply it together with the Frequency Modi-
fied Fourier Transform (FMFT) (Sidlichovský & Nesvorný 1996) to study
the stationary space (Schwarzchild 1993) of an average realistic Hamilto-
nian model (Muzzio et al. 2005).

Using the LP-VIcode, in Maffione et al. (2011b) and Darriba et al.
(submitted) the authors suggest an efficient package of CIs to study a
general Hamiltonian. Here the research is extended to show that the
complementary use of the LP-VIcode and the spectral analysis methods
is highly recommended to study a realistic Hamiltonian model.
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1. Introduction

The detection of chaotic behaviour in any dynamical system, such as galaxies
or planetary systems, may be carried out by means of several techniques. The
most commonly used are those based on spectral analysis and on the study of the
evolution of the deviation vectors, the so-called variational chaos indicators (CIs
hereafter). Among the CIs we can find several examples: the Lyapunov Indica-
tors (LIs), the Mean Exponential Growth factor of Nearby Orbits (MEGNO),
the Smaller Alignment Index (SALI) and its generalized version, the General-
ized Alignment Index (GALI), the Fast Lyapunov Indicator (FLI), its first order
variant, the Orthogonal Fast Lyapunov Indicator (OFLI) and its second order
variant, the OFLITT2 , the Spectral Distance (D) and the Dynamical Spectras
of Stretching Numbers (SSNs), the Relative Lyapunov Indicator (RLI) and the
Average Power Law Exponent (APLE), among others (see our text and refer-
ences below). All of them have their own advantages and disadvantages, making
them particularly suitable for different situations.

It could be very interesting and fruitful to have the possibility of easily
computing any CI. This is the main goal of the first part of this work where we
present an alpha version of the LP-VIcode (the acronym for La Plata-Variational
Indicators code). The aim of the code, as its name suggests, is to easily com-
pute several CIs and, for instance, in Maffione et al. (2011b) (hereafter M11)
and Darriba et al. (submitted) (hereafter D12), the authors use it to make a
comparative evaluation among them in order to analize the main advantages
and drawbacks of each indicator. On the other hand, in the second part of this
work we present the results of the application of the CIs implemented within the
code, together with a spectral analysis method, to show that the complementary
use of both types of chaos detection tools is strongly advisable.

The CIs can recover the resonant structure (see for instance, Kaneko &
Konishi 1994; Cincotta et al. 2003; Froeschlé et al. 2006; Lukes-Gerakopoulos
et al. 2008) but as they are based on the concept of local exponential divergence,
they are specially sensitive to indicate the presence of chaos. The introduction
of the Lyapunov Characteristic Exponents (LCEs) (see e.g. Skokos 2010 for a
current thorough discussion) as well as its numerical implementation (Benettin
et al. 1980; Skokos 2010) was a major contribution to the advance of chaos
detection. The integration time is bounded, so we are able to reach just trun-
cated approximations of the theoretical LCEs, i.e. the already mentioned LIs
(see Benettin et al. 1976; Benettin et al. 1980; Froeschlé 1984; Tancredi et
al. 2001 and Skokos 2010). A drawback of the computation of the LIs is their
very slow speed of convergence. Nevertheless, since the introduction of the first
definition of the LI, a large number of CIs have improved the LIs’ slow speed
of convergence holding many useful characteristics of it. The following CIs are
already implemented in the LP-VIcode with the LI: the MEGNO (Cincotta &
Simó 2000; Cincotta et al. 2003; Giordano & Cincotta 2004; Goździewski et
al. 2005; Gayon & Bois 2008; Lemâıtre et al. 2009; Hince et al. 2010; Maf-
fione et al. 2011a; Compère et al. 2011) and a quantity derived from it: the
MEGNO’s Slope Estimation of the largest LCE (SElLCE), the SALI (Skokos
2001; Skokos et al. 2004; Széll et al. 2004; Bountis & Skokos 2006; Carpintero
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2008; Antonopoulos et al. 2010) and the GALI (Skokos et al. 2007; Skokos et al.
2008; Manos & Athanassoula 2011), the FLI (Froeschlé et al. 1997a; Froeschlé
et al. 1997b; Froeschlé & Lega 1998; Froeschlé & Lega 2000; Lega & Froeschlé
2001; Guzzo et al. 2002; Froeschlé & Lega 2006; Paleari et al. 2008; Todorović
et al. 2008; Lega et al. 2010), the OFLI (Fouchard et al. 2002) and the OFLITT2
(Barrio 2005; Barrio et al. 2009; Barrio et al. 2010); the D (Voglis et al. 1999)
and the SSNs (Voglis & Contopoulos 1994; Contopoulos & Voglis 1996; Con-
topoulos & Voglis 1997; Contopoulos et al. 1997; Voglis et al. 1998). Finally,
we have also implemented the RLI (see Sándor et al. 2000; Széll et al. 2004;
Sándor et al. 2004 and Sándor et al. 2007) and the APLE (Lukes-Gerakopoulos
et al. 2008). The RLI is not based on the evolution of the solution of the first
variational equations as the rest of the variational indicators implemented, but
on the evolution of two different but very close orbits. The APLE is based on
the concept of Tsallis Entropy.

The other widespread techniques devoted to chaos detection are the anal-
ysis of some particular quantities (e.g. the frequency) of a single orbit. The
main contributions in the area of chaos detection is due to Binney & Spergel
(1982) and Laskar (1990) (see also Laskar et al. 1992; Papaphilippou & Laskar
1996; Papaphilippou & Laskar 1998). The Frequency Modified Fourier Trans-
form (FMFT) outlined by Sidlichovský & Nesvorný (1996) is another example
of such kind of technique. The FMFT is the spectral analysis method selected
for this investigation.

As previously mentioned, in M11 the authors compare the CIs implemented
in an early version of the LP-VIcode on symplectic mappings. In D12, the au-
thors use a later version of the LP-VIcode (where the CIs library was increased).
Therefore, they do not only extend the work on mappings to a simple Hamil-
tonian flow: the Hénon & Heiles (1964) potential, but also they increase the
number of CIs considered in the comparison. Both works deal with a compar-
ative evaluation of the following CIs: the LI, the MEGNO, the SALI and the
GALIs (GALIk with k = 2, 3, 4), the FLI and the OFLI, the D and the SSNs and
the RLI on symplectic mappings and a Hamiltonian flow. Finally, they suggest
an efficient set of CIs (or CI’s function which they call CIsF) composed by the
pair FLI/OFLI, the MEGNO and the GALI2N to study a general N–degree of
freedom (d.o.f.) Hamiltonian system. In a work in progress, we use the lat-
est version of the LP-VIcode, and do some experiments in a somehow realistic
model of a triaxial stellar Hamiltonian system (Muzzio et al. 2005; Cincotta
et al. 2008). The LP-VIcode latest version library of CIs includes all the CIs
mentioned in the earlier versions of the code, plus the SElLCE, the OFLITT2 and
the APLE. We extend the previous comparative studies of the CIs and find that
the CIsF to study a general Hamiltonian system can be improved considering
the pair FLI/OFLI, the pair MEGNO/SElLCE and the OFLITT2 or the GALI2N .
The pair FLI/OFLI and the pair MEGNO/SElLCE are recommended to study
big samples of orbits by means of just computing their final values. The OFLITT2
or the GALI2N are suggested to study small regions of very complex dynamics
or regions dominated by strong chaos (Skokos et al. 2007; Skokos et al. 2008;
D12), respectively. However, here we are going to test the CIs against a spectral
analysis method on two regions of the stationary and the x0 − z0 start spaces
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(Schwarzchild, 1993) of the self–consistent triaxial stellar Hamiltonian model
previously mentioned. In order to do so, we use one of the recommended CIs to
study big samples of orbits, i.e. the MEGNO/SElLCE, and the LI (both tech-
niques already implemented in the LP-VIcode) and the FMFT as the selected
spectral analysis method.

This paper is organized as follows: in Section 2 we present the code and
explain its main features. In Section 3 we apply the LP-VIcode to study a
realistic model. In order to investigate the advantages and drawbacks of the
selected CIs included in this version of the LP-VIcode and the FMFT, we apply
both types of chaos detection techniques to study the same space and compare
the results in Section 4.

2. The LP-VIcode

The LP-VIcode (in its alpha version) computes several CIs. It was coded in FOR-
TRAN 77, although it is intended to be recoded in FORTRAN 90 on a later version.

Although the current version of the code is in a developing stage, it has
already implemented twelve indicators, already named in Section 1. The record
is: the LI, the RLI, the SALI, the GALIk, the MEGNO, the SElLCE, the FLI,
the OFLI, the OFLITT2 , the D, the SSNs and the APLE.

2.1. The CIs implemented in the LP-VIcode

The Lyapunov Indicator (LI). Consider a continuous dynamical system

defined on a differentiable manifold S, where ~Φt(~x) = ~x(t) characterizes the
state of the system at time t, ~x(0) = ~x0 being the state of the system at time
t = 0. Therefore, the state of the system after two consecutive time steps t and

t′ will be given by the composition law: ~Φt+t′ = ~Φt ◦ ~Φt′ .

The tangent space of ~x maps onto the tangent space of ~Φt(~x) according to

the operator d~x~Φ
t and following the rule ~w(t) = d~x~Φ

t(~w(0)) where ~w(0) is an
initial deviation vector. The action of such operator at consecutive time intervals
satisfies the equation:

d~x~Φ
t+t′ = d~Φt′ (~x)

~Φt ◦ d~x~Φt′ .

If we suppose that our manifold S has some norm denoted by ‖ · ‖, we can
define the quantity:

λt(~x) =
‖d~x~Φt ~w‖
‖~w‖

called “growth factor” in the direction of ~w.
Consider an N -dimensional Hamiltonian H(~p, ~q), with ~p, ~q ∈ RN , which we

consider it autonomous just for the sake of simplicity. Let us remember that
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~x = (~p, ~q) ∈ R2N , ~f(~x) = (−∂H/∂~q, ∂H/∂~p) ∈ R2N ,

and then, the equations of motion are

~̇x = ~f(~x). (1)

Let γ( ~x0; t) be an arc of the orbit in the flux given by equation (1) over a
compact energy surface: Mh ⊂ R2N ,Mh = {~x : H(~p, ~q) = h} with h a constant,
then

γ( ~x0; t) = ~x(t′; ~x0) : ~x0 ∈Mh, 0 ≤ t′ < t.

We define the LCE χ:

χ[γ( ~x0; t)] = lim
t→∞

1

t
lnλt[γ(~x0; t)], (2)

and for its numerical implementation in the LP-VIcode we take the finite time
limit of Eq. (2);

LI = lim
t→T

1

t
lnλt[γ(~x0; t)],

with T a finite time.

The Relative Lyapunov Indicator (RLI). If we graph the fluctuations of
the LI, they are not significative. Thus, in order to amplify those fluctuations
Sándor et al. (2004) define the quantity:

∆LI( ~x0; t) = ‖LI( ~x0 + ~∆x; t)− LI( ~x0; t)‖,

where ~x0 and ~x0 + ~∆x0 are two very close initial conditions at time t,

separated by a quantity | ~∆x|, which is a free parameter. Then, the RLI is
defined through the expression:

RLI(t) =< ∆LI( ~x0) >t=
1

t

t/δt∑
i=1

∆LI( ~x0, i× δt), (3)

with i the number of steps of stepsize δt. We use the expression (3) in the
LP-VIcode in order to compute the RLI.

The Dynamical Spectra of the Stretching Numbers (SSNs) and the
Spectral Distance (D). The local stretching number si is defined as:

si =
1

δt
ln
|d~x~Φt+i×δt(~ω(0))|
|d~x~Φt+(i−1)×δt(~ω(0))|

, (4)

where d~x~Φ
t+i×δt(~ω(0)) = ~ω(t+i×δt) is the deviation vector at time t+i×δt.

Then, the SSNs are given by the density probability of the values s given
by the si, i.e.
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S(s)ds =
dN(s)

N
, (5)

where N is the total number of si and dN(s) is the number of si in the
interval (s, s + ds). Thus, the computing of the SSNs in the LP-VIcode is just
the construction of these histograms.

Then, the D is computed as the difference of two histograms of a given
orbit. That is

D2 =
∑
s

[S1(s)− S2(s)]2 ×∆s, (6)

where Sj(s) is the normalized number of si associated to the initial deviation
vector ~ωj(0), which has values in the interval s, s+ ∆s.
The implementation of both the SSNs and the D in the LP-VIcode is based on
the work of Voglis et al. (1999) and summarized by Eqs. (4), (5) and (6).

The Mean Exponential Growth Factor of Nearby Orbits (MEGNO)
and the MEGNO’s Slope Estimation of the largest Lyapunov Charac-
teristic Exponent (SElLCE). The concept of local mean exponential rate
of divergence of nearby orbits becomes evident when we rewrite the value of the
LCE (Eq. 2) in an integral fashion:

χ[γ(~x0; t)] = lim
t→∞

1

t

∫ t

0

‖ḋγ~Φt′ ~w‖
‖dγ~Φt′ ~w‖

dt′.

Then, Cincotta & Simó (2000) defined the value Y as

Y [γ(~x0; t)] =
2

t

∫ t

0

‖ḋγ~Φt′ ~w‖
‖dγ~Φt′ ~w‖

t′dt′.

Finally, they introduced the MEGNO define as the average of Y , i.e.:

Y [γq( ~x0)] ≡ 1

t

∫ t

0
Y [γq( ~x0; t′)]dt′. (7)

Having the value of the MEGNO (Eq. (7)), Cincotta et al. (2003) suggest a
linear behaviour to enclose the MEGNO’s performances for regular and chaotic
orbits,

Y [γ( ~x0; t)] ≈ aγt+ bγ , (8)

where aγ = χγ/2 and bγ ≈ 0 for irregular, chaotic motion, while aγ = 0 and
bγ ≈ 2 for quasiperiodic motion.
The SElLCE takes the last 80% of the time series samplings and makes a lin-
ear least square fit, in order to estimate the value of χ through the MEGNO
behaviour given by Eq. (8).

The LP-VIcode computes the MEGNO following the Eq. (7), and makes
the least square fit to recover the Eq. (8) and compute the SElLCE.



Chaos detection tools: The LP-VIcode and its applications 351

The Smaller Alignment Index (SALI) and the Generalized Alignment
Index (GALI). In Skokos (2001), the authors introduce the SALI in the
following way: first they define the parallel and antiparallel index

d− = ‖~ω1 − ~ω2‖, d+ = ‖~ω1 + ~ω2‖, (9)

respectively. Then, they define the SALI at a time t as the lowest of these
two indexes:

SALI(t) = min(d+, d−). (10)

In Skokos et al. (2007), the SALI is generalized, introducing the GALI as

GALIk(t) = ‖ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)‖,

where ŵi(t) = ~wi(t)
‖~wi(t)‖ , i = 1, 2, . . . , k is the normalized deviation vector.

As the computing of the GALI is very expensive in computational terms,
Skokos et al. (2008) introduced a variation for the numerical computation of
the GALIk by making use of the singular value decomposition (SVD routine) of
matrices and found that

log(GALIk) =
k∑
i=1

log(zi), (11)

where the zi are singular values of a given matrix Z.
The LP-VIcode computes the SALI following Eq. (10) and the GALI using

the SVD routine of Numerical Recipes1 to calculate the indicator through Eq.
(11).

The Fast Lyapunov Indicator (FLI) and the Orthogonal Fast Lya-
punov Indicator (OFLI). The FLI is a quantity closely related to the
LI, which can distinguish between chaotic and regular motion (Froeschlé et al.
1997a; Froeschlé et al 1997b) and even between resonant and non-resonant mo-
tion (Froeschlé & Lega 2000; Lega & Froeschlé 2001; Guzzo et al. 2002) using
(just) the first part of the numerical computing of the largest LCE.

For anN -dimensional system, in the LP-VIcode we follow the time evolution
of the 2N deviation vectors and take the (euclidean) norm of each one. Then
we record every K time steps, the largest of the norms, i.e. at time t the FLI is
computed as

FLI(t) = sup
t

[‖~w1(t)‖, ‖~w2(t)‖, . . . , ‖~w2N (t)‖] . (12)

As to the OFLI (see Fouchard et al. 2002), it is similar to the FLI, but in
this case we take the orthogonal component to the flow of each deviation vector
of the basis, time to time. Then it is defined as

1See Skokos et al. (2008) for further details.
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OFLI(t) = sup
t

[
w1(t)⊥, w2(t)⊥, . . . , w2N (t)⊥

]
. (13)

Notice that, although in the LP-VIcode we initially use the original defi-
nition of the FLI given in Froeschlé et al. 1997a, to define the OFLI, we later
included the definition of the FLI given in Froeschlé & Lega 2000, where the
authors use only one deviation vector. As they claim, the results do not vary,
but the CPU-time is obviously reduced. Finally, the OFLI can be also computed
using just one deviation vector, following the definition given in Fouchard et al.
2002.

The OFLI2
TT . In Barrio (2005) the author defines the OFLI2

TT , a second order
variational indicator, as follows:

OFLI2
TT (t) = sup

0<t<tf

ŵ(t)⊥,

ŵ(t)⊥ being the orthogonal component of the flow of ~̂w(t), where ~̂w(t)

~̂w(t) = ~w(t) +
1

2
~w(2)(t)

~w(t) and ~w(2)(t) being the solutions of the first and second order variational
equations at time t, respectively.

Finally, in the LP-VIcode we take the superior ŵ(t)⊥ in the interval (0, tf ]
for a given total time tf . For further details, we refer to Barrio (2005), Barrio
et al. (2009), and Barrio et al. (2010).

The Average Power Law Exponent (APLE). This method is based on
the concept of Tsallis Entropy, thoroughly explained in Lukes-Gerakopoulos et
al. (2008). Thus, here we limit ourselves to show the formula we use to compute
the indicator in the LP-VIcode.
For an N–dimensional Hamiltonian, these authors consider a partitioning of the
2N–dimensional phase space S into a large number of volume elements of size
δ2N for some small δ and let ~x(0) be the initial condition of an orbit located in
a particular volume element. Thus, they introduce the APLE as follows:

APLE =
ln
(
|~w(t)|2
|~w(t1)|2

)
2 ln

(
t
t1

) ,

where |~w(t)|2 =
∑m

k=1 ‖~wk(t)‖2, and ~wk(t) is one of the m deviation vectors of
an orthogonal basis {~wk(t)} of the tangent space to S at the initial point ~x(0).
Every ~wk(t) has a length greater or equal to δ, and t1 is a transient initial time
of the evolution of the orbits.

2.2. The arrangement of CIs in units

As the dynamics of a given Hamiltonian should be analysed using different tech-
niques, providing a variety of CIs in the LP-VIcode proves advantageous.
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Nearly all the CIs mentioned in Section 2.1. are completely independent
from each other and can be computed separately. The only exceptions are the
SElLCE, which it strictly depends on the MEGNO values to do the least square
fit, and the RLI (which is the difference between the LI of two close orbits). Nev-
ertheless, the main drawback of computing them separately is the huge amount
of CPU time required. An alternative to reduce such a time-consuming process
is to arrange the CIs according to (the similarity in) their computation. That
is, although nearly all indicators can be computed independently, some of them
share some basic routines. For instance, both the FLI and the OFLI use the
evolution of the same 2N deviation vectors, N being the number of degrees of
freedom of the system2. Therefore, we decided to group the CIs in units the
indicators sharing part of their computing processes.
This grouping is ordered as follows: the RLI is implemented in the same unit as
the LI because it is the difference between the LI for two close initial conditions.
Furthermore, the SALI is implemented in the same unit as the LI and the RLI,
since it uses the evolution of the length of 2 deviation vectors. This is done in
order to share the routine that computes the evolution of the deviation vectors
which uses a renormalization process. Because the SElLCE (as mentioned be-
fore) uses the MEGNO to estimate the LI of the orbit, both CIs, the MEGNO
and the SElLCE belong to the same unit. The FLI, the OFLI and the APLE
can be computed using the same deviation vectors (2N or just one, depending
on the definition). Moreover, all of them use a routine that computes the evo-
lution of the deviation vectors without the renormalization process previously
used with the LI, RLI or SALI. The SSNs are basically built on the computa-
tion of histograms, and the D uses the difference of the SSNs for two different
deviation vectors of a given orbit. Then, both of them are included in the same
unit. The GALIk is computed in a different unit, due to the fact that it is the
only CI using the SVD routine (see Section 2.1.). The OFLITT2 is in a separate
unit because it is the only CI that needs the computation of the second order
variational equations, which requires the evaluation of third order derivatives.

Finally, the CIs implemented so far are arranged in the LP-VIcode as fol-
lows:

� Unit 1: LI, RLI and SALI

� Unit 2: MEGNO and SElLCE

� Unit 3: FLI, OFLI and APLE

� Unit 4: SSN and D

� Unit 5: GALIk

� Unit 6: OFLITT2

2According to the orginal definition given in Froeschlé & Lega (1997a), they can use the same
deviation vector, according to the actual definition given in Froeschlé & Lega (2000), see Section
2.1. for further details.
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2.3. The input files

The LP-VIcode needs two input files in order to work. One of these files is a
parameter file, in which all the information about the calibration of the indicators
as well as the format of the output files is introduced. The other one is an input
data file, which indicates which orbits we would have to compute.

The parameter file. Nearly all parameters can be set from this parameter
file and only a few are still remain in the main program (mainly related with
the specific problem). The main structure of this file consists of two parts. The
first one arranges the input and output filenames and the second one arranges
the parameters themselves. These parameters are the following:

� Physical parameter: the energy of the system (in case the user does not
specify all the initial condition coordinates of the phase space).

� RLI parameter: the initial separation of both orbits (see Section 2.1).

� Output parameter: a binary value to set which output is preferred in the
computation, i.e. “0” only the final value of the CI (i.e. the value of the
indicator at the end of the computing process) and “1” the time evolution
of the CI.

� Trajectory parameter: a binary value to print the phase space coordinates
of the orbit (“1”), or skip the time-consuming writing process (“0”).

� CIs’ selection parameter: a set of integer values to specify which units or
CIs are to be computed.

� Formatting parameters.

The CIs’ selection parameter is one of the key parameters of the code, be-
cause it allows us to compute several CIs (with the efficient grouping mentioned
before) to reduce the CPU time (see Section 2.2.), or to compute them sepa-
rately. The parameter is a horizontal array of 6 integers (one for each unit) which
indicates the program if a given unit should be computed (value set equal to “1”)
or not (value set equal to “0”). In the case of the second unit (the MEGNO and
the SElLCE), “1” is adopted so as to compute the MEGNO alone and “2” to
compute the MEGNO and the SElLCE together.

The data file. The data file has a very simple format. In the first commented
line, the order in which the program will read the data values is specified, i.e.
the cartesian coordinates, the conjugate momentums and, the total integration
time.

2.4. The Integrator

There are a lot of Ordinary Differential Equations (ODEs) integrators which can
be implemented in the LP-VIcode, and the independency from the integrator
routine is part of a future implementation. On the other hand, all the indicators
already implemented in the code must integrate not only the equations of motion
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but also the first (and second) variational equations. Therefore, we need to
count on an efficient integrator for these tasks. For instance, according to D12, a
suitable integrator routine is the Prince & Dormand implementation of a Runge-
Kutta method of order 7 − 8 called DOPRI8 (for more information see Prince
& Dormand 1981). Thus, the DOPRI8 routine is the ODEs integrator selected
for the current version of the LP-VIcode.

3. Applications

In order to compare both types of chaos detection techniques (i.e. the varia-
tional and the frequency-based ones), we apply the MEGNO/SElLCE and the
LI as representatives of the variational indicators implemented in the LP-VIcode
and the FMFT, which is the selected spectral analysis method. Thus, in this
section we are going to use the LP-VIcode and a spectral analysis method as
complementary tools to study two regions of the stationary and the x0−z0 start
spaces (Schwarzchild, 1993) of the model introduced in Muzzio et al. (2005)
which will be briefly described in the next section.

3.1. The potential

The self–consistent triaxial Hamiltonian model of an elliptical galaxy is obtained
after the virialization of an N–body self–consistent system composed of 105 par-
ticles (Muzzio et al. 2005). The model reproduces many dynamical character-
istics of real elliptical galaxies, such as mass distribution, flattening, triaxiality
and rotation (Muzzio 2006). Therefore, it seems to provide a useful realistic
scenario to apply the LP-VIcode and the FMFT as well.

The equation that reproduces the potential is

V (x, y, z) = −f0(x, y, z)− fx(x, y, z) · (x2 − y2)− fz(x, y, z) · (z2 − y2),

where
fn(x, y, z) =

αn

[pann + δann ]
acn
an

, (14)

αn, δn, an, acn are constants and p2
n is the square of the softened radius

given by p2
n = x2 + y2 + z2 + ε2 when n = 0, or p2

n = x2 + y2 + z2 + 2 · ε2 for
n = x, z.

The adopted value for the softening parameter is ε ' 0.01 for any n. The
functions fn(x, y, z) were computed through a quadrupolar N–body code for 105

particles, which allowed the authors to write them in a general fashion given by
Eq. (14). The adopted values for the constants αn, δn, an and acn are given
in Table 1. For further references, see Muzzio et al. (2005) and Cincotta et al.
(2008).

The stationary character of the parameters given in Table 1 were tested
by performing several fits at different times after virialization, resulting in a
precision of 0.1%.

After the system had relaxed, there remained 86818 particles resembling an
elliptical galaxy (the system obeying a de Vaucouleurs’ law, as shown in Fig. 2
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Table 1. Adopted values for the coefficients of the functions fn given by
Eq. (14).

α a δ ac

n = 0 0.92012657 1.15 0.1340 1.03766579

n = x 0.08526504 0.97 0.1283 4.61571581

n = z −0.05871011 1.05 0.1239 4.42030943

in Muzzio et al. 2005) with a strong triaxiality and a flattening that increases
from the border of the system to its center (see Table I in the same paper).

The obtained triaxial potential has semi–axes X,Y, Z satisfying the condi-
tion X > Y > Z, and its minimum, which is close to −7, matches the origin. As
expected, the potential is less flattened than the mass distribution (see Table I
in Muzzio et al. 2005).

As we mentioned at the beginning of this section, the potential seems to
provide a useful realistic scenario to test the LP-VIcode and the FMFT. Thus,
in the next subsection, we describe how we proceed (in order) to compare both
techniques as chaos detection tools.

3.2. Comparative evaluation of the FMFT and the SElLCE as global
chaos detection techniques

Preliminaries. Herein we apply a spectral analysis method, the FMFT, and
a CI, the SElLCE (one of the indicators in the library of the LP-VIcode) to two
regions on the energy surface −0.7 of the potential described in Section 3.1.. In
order to compare both techniques as chaos detection tools we apply the FMFT
and the SElLCE to a few samples of initial conditions in the stationary space
and in the x0 − z0 start space of the self-consistent triaxial stellar model.

There are several ways to compare chaos detection tools. Our choice is to
determine which technique offers the most detailed phase space portrait using
the same integration time. Therefore, we must first determine an integration
time by which the techniques (at least for most of the initial conditions of the
samples) are out of a transient regime; otherwise, we will obtain unreliable phase
space portraits.

We will consider a time of 103 characteristic times3 to keep the LI out of
the transient interval, as the authors did in Maffione et al. (2011a). That is, a
convergent LI is the criterion used (in order) to yield reliable values of the CIs,
in particular of the MEGNO/SElLCE indicators. From Maffione et al. (2011a)
we know that for the energy surface −0.7, the characteristic time is ∼ 7 u.t.
So, (in order) to obtain reliable values for the CIs previously mentioned, the
integration time must be 7× 103 u.t.

3We approximate this time-scale as the period of the axial orbit on the semi-major axis X of
the model.
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The FMFT indicates regular motion when the frequencies do not change in
time, i.e. the orbit is confined within a torus, which is well defined by a set of N
frequencies (where N is the number of the d.o.f. of the system). However, if the
orbit is chaotic, there is a variation in the frequencies. This lack of constancy in
time means that the orbit is not confined within a torus4. The precision on the
computation of the frequencies is a key parameter, because the FMFT might
not show a variation of the frequencies in time and thus, it might not be able to
distinguish chaotic from regular orbits. Then, to determine such a precision and
the efficiency in describing the phase space portraits of the triaxial model for
the FMFT, we use the same final integration time used with the SElLCE, i.e.
103 periods, which is enough to stabilize the LI for most of the initial conditions
of the samples.

Finally, the equations of motion and their first variationals are integrated
for a final integration time of 7 × 103 u.t. in the case of the SElLCE. For the
FMFT, we compare the computation of the fundamental frequencies in two 50%
(Wachlin & Ferraz-Mello 1998) overlapping time intervals, (in order) to estimate
possible variations in the frequencies. The first interval goes from 0 u.t. to 7×103

u.t., and the second one, from 3.5× 103 u.t. to 1.05× 104 u.t.
We apply the SElLCE and the FMFT to 624100 orbits in the region of the

stationary space and to 596258 orbits in the region of the x0 − z0 start space.
The integration of the equations of motion, which are necessary to compute

the frequencies with the FMFT, was carried out with the taylor package (Jorba
& Zou 2005), which proved to be a very convenient tool for the model under
analysis (see D12). The precision required for the phase space coordinates was
of 10−15.

On the other hand, the integrations for the LI and the MEGNO/SElLCE
were carried out with the DOPRI8 routine (see Section 2.4.), which it is more
efficient than taylor in the case of the simultaneous integration of both the
equations of motion and their variational equations for the self-consistent triaxial
stellar model (we refer to D12 for further details). The energy preservation with
DOPRI8 was of the order of ∼ 10−13, 10−14.

The following configuration was used for all the computations included in
this paper: a) Hardware: CPU, 2 x Dual XEON 5450, Dual Core 3.00GHz;
M.B., Intel S5000VSA; RAM, 4GB(4x1GB), Kingston DDR–2, 667MHz, Dual
Channel. b) Software: gfortran 4.2.3.

The experiment. In order to use the FMFT as a chaos detection tool, we
compute the quantity log(∆F ) (Wachlin & Ferraz-Mello 1998). The log(∆F )

is defined as ∆F ≡ |ν(1)
x − ν(2)

x | + |ν(1)
y − ν(2)

y | + |ν(1)
z − ν(2)

z |, where ν
(i)
j is the

fundamental frequency computed with the FMFT and associated with the degree
of freedom j (j = x, y, z) for the interval (i), with i = 1, 2 (the two overlapping
time intervals). Besides, we must have all the fundamental frequencies computed
for every orbit on both intervals and this is not the general case for every orbit.

4For further details on the FMFT, refer to Sidlichovský & Nesvorný (1996). Herein, we simply
describe how the indicator distinguishes between chaotic and regular motion, because it is
needed (in order) to compare its performance with the variational tool, the SElLCE.
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Thus, the phase space portraits of the log(∆F ) finally consist of 622521 orbits
on the stationary space and 594690 orbits on the x0 − z0 start space.

In Fig. 1 we present the SElLCE (left panels) and the log(∆F ) (right
panels) values for the region on the stationary space (top panels) and for the
region on the x0 − z0 start space (bottom panels) of the triaxial model under
analysis.

Figure 1. Phase space portraits of the stationary space with 624100 initial
conditions (top left panel) and of the x0 − z0 start space with 596258 initial
conditions (bottom left panel), using the values of the SElLCE integrated for
7× 103 u.t. Right panels, idem but with 622521 and 594690 initial conditions
(top and bottom right panels, respectively), using the log(∆F ) integrated on
two overlapping time intervals of 7×103 u.t. each. The values of the SElLCE
and the log(∆F ) are in logarithmic scale.

Although the SElLCE and the FMFT show similar results on the stationary
space (top panels of Fig. 1), the latter includes a high amount of spurious
structures5 on the x0 − z0 start space (bottom right panel of Fig. 1). This
spurious structures jeopardize the choice of a threshold value in order to identify
regular and chaotic orbits due to an unclear separation of the different kind of
motions. On the contrary, with a variational indicator as the SElLCE (bottom
left panel of Fig. 1), this classification into regular and chaotic motion seems to

5Some of them due to the Moiré phenomenon, which is common with methods using the discrete
Fourier transform (Barrio et al. 2009).
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be more natural and thus, more efficient. Nevertheless, if in the x0 − z0 start
space we take as chaotic orbits those which preserve 4 decimal digits or fewer in
their computed fundamental frequencies with the FMFT, we recover the phase
space portrait obtained by the SElLCE.

This kind of results, where the distinction between chaotic and regular
motion is not as clear as the one given by variational indicators like the SElLCE,
makes the FMFT a less reliable indicator when we study the global dynamics of
a divided phase space.

The process used to determine the chaoticity or regularity of the orbits by
means of the FMFT is standard. Then, the somehow inaccurate descriptions of
the portraits of divided phase spaces might be basically due to a high sensitivity
of the method with its parameters.

As regards the computing times, the SElLCE (one of the fastest CIs, to-
gether with the FLI and the MEGNO), took ∼ 670 hs for an integration time
of 7 × 103 u.t. and for 624100 orbits on the stationary space. For the 594690
orbits on the x0 − z0 start space, the CI took ∼ 330 hs.

Although the computing of the fundamental frequencies with the FMFT is
quite fast, the determination of the log(∆F ) is time consuming. For instance, for
the generation of the right panels of Fig. 1, two 50% overlapping time intervals
of 7 × 103 u.t. each were necessary. In other words, the integration of the
equations of motion was performed for a total time interval of 1.05× 104 u.t. in
order to have the frequencies computed after 103 periods in both intervals, the
same amount of periods used with the SElLCE. Finally, the time taken by the
log(∆F ) was ∼ 885 hs. for the stationary space and ∼ 450 hs. for the x0 − z0

start space. Therefore, the computing speed of the fundamental frequencies by
the FMFT is lost against the whole process involved in the determination of the
variation of the frequencies with the log(∆F ). In fact, the computing of the
log(∆F ) is necessary to distinguish between regular and chaotic orbits with the
FMFT and thus, the FMFT as a global chaos indicator turns out to be slower
than the SElLCE (and other similar fast CIs).

In the next section we consider the FMFT as an appropriate method for the
determination of the fundamental frequencies only of the regular orbits as well
as an efficient tool to determine the resonant map of the system. Furthermore,
we use the FMFT as an complement to the LP-VIcode in order to depict the
global picture of the stationary phase space.

4. Complementary use of the LP-VIcode and the FMFT

The analysis by means of the LI, the MEGNO/SElLCE and the FMFT of the
stationary space of the triaxial potential of Muzzio et al. (2005) for different
energy surfaces gives us enough information to shortly discuss the advantages
of using both types of techniques together, i.e. CIs (within the LP-VIcode) and
spectral analysis methods (with the FMFT).

4.1. The contribution of the LP-VIcode

We consider samples of 1000444 initial conditions for the energy surfaces defined
by the constant values −0.1 and −0.7; the integration times are of 1.17×105 u.t.
(for the energy surface −0.1 the period of the semi-major axis orbit is ∼ 117
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u.t.) and 7 × 103 (see Section 3.2.), respectively . As the computing times
become critical in the experiment, we select, from the LP-VIcode, CIs of low
computational cost: the LI and the MEGNO/SElLCE (the FLI/OFLI could be
an equal efficient alternative).

The corresponding phase space portraits are presented in Fig. 2, left panel
for the energy surface −0.1 and right panel for the energy surface −0.7.

Figure 2. Phase space portraits by means of the SElLCE for the stationary
space of the triaxial model, integrating 1000444 orbits for 103 periods on
two energy surfaces. On the left panel, for the energy surface −0.1 within a
time interval of 1.17 × 105 u.t and on the right panel, for the energy surface
−0.7 within a time interval of 7 × 103 u.t. The values of the SElLCE are in
logarithmic scale.

The SElLCE shows a very good performance in describing the phase space
portraits corresponding to a strongly divided phase space like the present one.
Nevertheless, as it has not a natural way to determine a threshold value to
distinguish chaotic from regular orbits, we have to estimate it (in order) to
study the phase space portraits presented by the SElLCE in Fig. 2.

To determine such threshold for the SElLCE, we can calibrate the CI in
order to obtain similar percentages of chaotic and regular orbits than those ob-
tained with other confident CI with a defined threshold. The MEGNO is the first
alternative due to the fact that the SElLCE needs its computation. However, as
the MEGNO shows a high sensitivity with its asymptotically theoretical thresh-
old (see e.g. M11; D12), it is not reliable to be used to calibrate other indicators.
Therefore, we use other indicator already implemented in the LP-VIcode.

As aforementioned, the computing time is a key variable in the experiment,
and thus, the LI is the CI of least computational cost given a fixed total inte-
gration time. Moreover, the indicator has a theoretical threshold value to start
with: ln(T )/T , with T being the total integration time. Starting with the the-
oretical approximation of the threshold, we calibrate it by inspection and find
appropriate threshold values for the LI for both energy surfaces. Finally, the
threshold of the SElLCE is estimated by an iterative process, which is stopped
when the percentage of chaotic orbits best approximates the percentage of the
chaotic component yielded by the LI.

In Table 2 we present, from left to right, the energy surface, the threshold
value (Vc) estimated for the LI, the corresponding percentage of chaotic orbits,
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the estimated threshold value for the SElLCE and the corresponding percentage
of chaotic orbits.

Table 2. For both energy surfaces considered on the stationary phase space
(i.e. −0.1 and −0.7): the threshold value used for the LI, the percentage
of the chaotic component given by the LI, the estimated threshold value for
the SElLCE and the corresponding percentage of the chaotic component are
detailed.

Energy Vc (LI) Chaos (%) -LI Vc (SElLCE) Chaos (%) -SElLCE

−0.1 1.2× 10−4 ∼ 71.46% 1.4× 10−5 ∼ 66.83%

−0.7 1.7× 10−3 ∼ 65.09% 2.7× 10−4 ∼ 62.87%

Independently of the energy surface considered, the chaotic component dom-
inates the phase space portraits (columns 3 and 5 of Table 2). However, as we
move to more negative energy surfaces (−0.7), the regular component increases.
The variation is not important along the energies considered, though.

On the left panel of Fig. 2, we observe that the chaotic and regular compo-
nents are almost separated. On the one hand, we have the chaotic component
fully connected for values of px0 . 1.7, and the region of regular orbits for val-
ues of px0 & 1.7, except for some structures which arise from the border of the
energy surface and enter the regular component. Furthermore, these structures
multiply themselves as we go to more negative energies (more bonded regions
of the potential). These structures are resonances that overlap with each other,
and start to populate the regular component. We can also observe a division
inside the chaotic component, where the connected chaotic domain move back
to lower values of px0 , giving place to another chaotic domain characterized by
a regime of resonance overlap and by a lower Lyapunov exponent (notice the
different colours). On the right panel of Fig 2, for an energy surface of −0.7, the
resonances fill the regular component; strong resonances in the chaotic domains
are also observed. The most remarkable is the one which lies around px0 ∼ 0.5.

Given a global portrait as the one shown by means of the SElLCE, with a
variational indicator we can visualize many phenomena such as how the chaotic
and regular components interact, where the resonances appear and how they
overlap to generate chaotic regions. However, we should make a great effort
with the CIs if we need more detailed information because we need the resonant
map to understand many of the causes of such phenomena.

In order to obtain the resonant map, the time evolution of the CIs which can
provide information about the dimensionality of the torus on which the regular
orbits lie (like the GALIs) can be analyzed, and thus, infer the resonances to
which they belong. There is another way to identify the periodic orbits (e.g.
using the OFLI) and analyze their stability (as done in Cincotta et al. 2008 with
the MEGNO) in order to search for orbital families generated by perturbations
to such parent periodic orbits in nearby regions. However, this process could be
very slow because the CIs are not the best suited for the task.

It remains to apply the method of spectral analysis, i.e. the FMFT, to
improve the study of the regular component with the associated resonant map,
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and thus, complement the information given by the SElLCE (also assisted by
the LI).

4.2. The contribution of the FMFT

We use the FMFT to compute the frequencies of a representative sample of
regular orbits and determine the resonant map of the stationary space studied
in Section 4.1. by means of the SElLCE.

We first need to identify the sample of regular orbits to apply the FMFT.
Such a sample consists of orbits that are simultaneously classified as regular
orbits by the MEGNO and the LI. We call this sample “A”.

Having the representative sample “A” of regular orbits, we integrate the
equations of motion for 3 × 102 characteristic times (which gives us enough
precision) in order to compute the frequencies with the FMFT. We are not able
to compute the three fundamental frequencies for all the orbits of sample “A”
but for most of them. We call this reduced sample of regular orbits with the
three fundamental frequencies computed sample “B”. Finally, we use sample “B”
to compute the commensurabilities and identify the resonance web.

We consider as resonant orbits those whose resonant vector ~m ∈ Z − {~0}
satisfies the relation: ~m ·~ν < 10−6 with ~ν being the frequency vector. The value
10−6 is an estimated value according to the best fit between the resonance web
and the description of the phase space previously given by the CIs (Section 4.1.).
We separate the resonances according to the d.o.f. involved, i.e. into resonances
between 2 and 3 d.o.f. In the case of the resonances between 2 d.o.f., we only
searched for those of highest order, i.e. iterating until 2 × 102 on each d.o.f.
Lastly, we sorted them by their resonant vector’s absolute value which yields
information about the width and importance of the resonance (Reichl 2004).

In Table 3 we show, for each energy surface and a total of 1000444 initial
conditions, the number of orbits in the representative sample “A”, the total time
used with the FMFT to compute the fundamental frequencies, the number of
orbits in the reduced sample “B” and the number of orbits in resonance (with 2
or 3 d.o.f. involved).

Table 3. For each energy surface (i.e. −0.1 and −0.7) on the stationary
space, the following information is provided: the number of orbits in the rep-
resentative sample “A”, the integration time used by the FMFT to determine
the fundamental frequencies, the number of orbits in the reduced sample “B”
and lastly, the number of orbits in resonance between 2 or 3 d.o.f.

Energy Sample “A” Time interval Sample “B” In resonance

−0.1 7.2426× 104 3.51× 104 7.2295× 104 1.315× 103

−0.7 7.2948× 104 2.1× 103 7.2781× 104 1.773× 103

Notice in Table 3 that the percentage of orbits in resonances is not high
and is similar for both surfaces: ∼ 1.82% for −0.1 and ∼ 2.43% for −0.7 in the
stationary space.

In Figure 3 we show the resonant maps corresponding to the energy sur-
faces −0.1 (left panel) and −0.7 (right panel) of the stationary space of the
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Figure 3. Resonant maps for both energy surfaces on the stationary space.
We sort the resonances by the value m2 = |~m|2. Left panel for the energy
surface −0.1 and right panel for the energy surface −0.7.

self-consistent triaxial stellar model of elliptical galaxy under study. The reso-
nant map corresponding to the energy surface −0.1 shows populated regions of
resonant orbits near the chaotic component and close to the border of the corre-
sponding energy surface. However, the resonant orbits are of very low order (i.e.
|~m|2 & 103). On the other hand, on the right panel of Figure 3, we show the
results for the energy surface −0.7 and we observe a highly compact resonance
of high order in the chaotic domain. In order to identify such a resonace we
compute the rotational numbers with the fundamental frequencies given by the
FMFT and find that the resonance is between 2 d.o.f., the 4 : 3 (x:y) resonance.

As we can see from the experiment, the variational indicators such as the
LI and the couple MEGNO/SElLCE (computed with the LP-VIcode) and the
spectral analysis methods such as the FMFT work remarkably well as comple-
mentary methods.

5. Discussion

From all the studies carried on in this paper, we might conclude that having a
large indicators diversity is essential to have a precise description of a dynamical
system. Thus, in the first part of this work we presented the alpha version of
the LP-VIcode. A code that is on a developing stage but which has already
proved its value. The purpose of the LP-VIcode is to efficiently arrange together
a great variety of CIs in order to have at hand several dynamical tools to study a
given dynamical system. The arrangement has not considered spectral analysis
methods yet, since the original idea was to reduce the CPU time when comput-
ing several variational indicators. Nevertheless, this is not discarded for future
implementations.

The CIs included and full functioning in this alpha version of the LP-VIcode
are the following: the LI, the RLI, the SALI, the GALIk, the MEGNO, the
SElLCE, the FLI, the OFLI, the OFLITT2 , the D, the SSNs and the APLE (Sec-
tion 2.1.). They can be computed separately or within units, i.e., in order to
reduce the CPU time economizing similar processes they have in their comput-



364 L. A. Darriba et al.

ing routines (Section 2.2.).

In the second part of this work, we use the availability of the CIs given by
the LP-VIcode to compare different sort of tools for dynamical analysis. On the
one hand, we have the CIs which are based on the concept of local exponential
divergence and follow the evolution of the deviation vectors. On the other hand,
we have the spectral analysis methods, which require the integration of the
equations of motion to compute, e.g., the frequencies of regular orbits.

According to previous papers such as Barrio et al. (2009), we find that
the complementary use of such techniques, the CIs and the spectral analysis
methods, is a very efficient way to gather dynamical information (Section 4.).

Here, we show that the SElLCE (a CI) works better than the FMFT (a spec-
tral analysis method) as a global chaos detection tool (Section 3.2.) to describe
the divided phase space of the self-consistent triaxial stellar dynamical model
resembling and elliptical galaxy (Section 4.1.). The fundamental frequencies of
the regular orbits easily provided by the FMFT allow a fast building of the res-
onance web and thus, a quick understanding of many phenomena described in
the phase space portraits given by the CI (Section 4.2.).

Finally, in view of the present succesful applications of the LP-VIcode, there
are still many improvements to be made to the code. Among the main goals,
we can mention the following:

� To continue increasing the record of CIs in the library of the code.

� To incorporate routines to compute diffusion rates, in order to take advan-
tage of the many computations done by the code.

� To recode it in FORTRAN 90.

� To make the code independent of the integrator routine.

� To make the code independent of the model, using symbolic manipula-
tion programs to decode the differential equations and implement them
automatically.

Our aim is to release a stable version of the LP-VIcode with all those goals
implemented and offer the code to public domain, so that the interested commu-
nity may collaborate including their own chaos detection tools and/or improve
the ones already implemented.

The alpha version of the LP-VIcode is available directly by the authors
upon request.
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Compère, A., LemaÃ®tre, A. & Delsate, N. 2011, CeMDA, 112, 75-98

Contopoulos, G. & Voglis, N. 1996, CeMDA, 64, 1-20

Contopoulos, G. & Voglis, N. 1996, Astron. & Astrophys, 64, 1-20

Contopoulos, G., Voglis, N., Efthymiopoulos, Ch., Froeschlé, Cl., Gonczi, R., Lega, E.,
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