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Abstract. A regular black hole is represented by a singularity-free solu-
tion of the Einstein’s field equations. One possible set of regular black hole
solutions has the geometry of the space-time described by Schwarschild’s
solution at large radii and by a de Sitter-like solution at small radii. Solu-
tions of this kind can be found for some choices of the equation of state in
a static, spherically symmetric configuration. Adopting the equation of
state suggested by Mbonye and Kanzanas (2005), the model of the inte-
rior of the black hole consists of matter fields with sound speed bounded
by the speed of light. The matter transits smoothly between normal mat-
ter and a core of a “quintessence-like” fluid with an equation of state that
approaches p = −ρ when r → 0. In this work we address the question of
the thermodynamical behavior of the matter that constitutes the interior
of this non-singular black hole model. We derive the general equations of
the thermodynamic quantities for an arbitrary density profile and adjust
the results to the specific regular black hole. Then, we discuss a possible
physical interpretation of the state of regular black hole interiors.

Resumen. Un agujero negro regular se representa por una solución
de las ecuaciones de Einstein libre de singularidades. La geometŕıa del
espacio-tiempo para un posible conjunto de estas soluciones es la solución
de Schwarzchild para radios grandes, mientras que cerca del origen la ge-
ometŕıa del espacio-tiempo es de de Sitter. Dependiendo de la elección
de la ecuación de estado, este tipo de soluciones pueden tener una con-
figuración estática y esféricamente simétrica. La ecuación de estado que
utilizamos en este trabajo fue propuesta por Mbonye y Kazanas (2005):
el modelo del interior del agujero negro regular consiste en materia cuya
velocidad del sonido es siempre menor que la velocidad de la luz. El esta-
do de la materia cambia en forma continua y suave desde materia normal
a materia extraña cerca del origen con una ecuación de estado del tipo
p = −ρ para r → 0. En este trabajo estudiamos el comportamiento ter-
modinámico de la materia en el interior del agujero negro no singular
a partir de las ecuaciones generales de la termodinámica. Por último,
discutimos una posible interpretación f́ısica del estado del agujero negro
regular.
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1. Introduction

A special type of regular black hole solution is characterized by the presence of
matter at the center of a static configuration with an equation of state of the form
p = −ρ. The repulsive behavior of the matter prevents complete gravitational
collapse, as in the case of the so-called ’gravastars’. See Camenzind (2007),
Sect. 8.7, for a detailed discussion of the motivation for using this particular
equation of state and density profile. The resulting description of the space-time
geometry is singularity-free.The main goal of the present work is to study the
thermodynamic properties of the interior black hole region of such a space-time
and to provide a possible physical interpretation.

2. Regular black hole

2.1. General features

A static spherically symmetric geometry can be described by the most general
line element:

ds2 = −B(r)dt2 +A(r)dr2 + r2(dθ2 + sin2(θ)dφ2). (1)

In order to obtain the line element that describes a regular black hole, it is
necessary to calculate the expressions for B(r) and A(r). We adopt the equation
of state suggested by Mbonye and Kazanas [1]:

pr =

[

α− (α+ 1)

(

ρ

ρmax

)2
]

(

ρ
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)

ρ, (2)

with α = 2.2135. The equation was constrained to obtain a model of the interior
of the black hole consisting of matter fields with sound speed bounded by the
speed of light. The physical state changes smoothly between normal matter
and a core of a “exotic matter” fluid with an equation of state that approaches
p = −ρ when r → 0.

The solution to the Einstein field equations Gµ
ν = −8πT µ

ν , for the metric
and the equation of state (2) takes the form [2]:
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dr2 + r2(dθ2 + sin2 θdφ2), (3)
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where the mass m(r) is given by m(r) = 4π
∫ r
0 ρ(r′)r′2dr′.

Equation (3) describes the geometry of the spacetime of a regular black hole
with matter and a de Sitter core. We can derive from the grr component of the
metric that this model presents an event horizont at R=2M . Here, R is the
radius at which the total mass M of the black hole is contained.
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In order to study the thermodynamic properties of this space-time we work
with the normalization of the density profile suggested by Dymnikova [3]:

ρ(r) = ρmaxe
−8 r3

R3 . (5)

Here, R3 = 8rgr
2
0, rg is a length scale of order of the Schwarzschild radius and

r0 = (3/8πρmax)
1/2.

2.2. Thermodynamics

The temperature of the matter as a function of the radius can be calculated
from the first law of thermodynamics:

TdS = d(ρV ) + pdV. (6)

From the Equation (6) we derive the following expression:

dp =
ρ+ p

T
dT. (7)

Replacing Equations (2) and (5) into (7) we obtain:

T

Tsup
=

[

1 + αe−8r3/R3

− (α+ 1)e−24r3/R3
]4/3

eΞ(r), (8)

Ξ(r) =
2

3

∫ e−8r3/R3

0

αd(ρ/ρmax)

1 + α(ρ/ρmax)− (α+ 1)(ρ/ρmax)3
. (9)
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Figure 1. Temperature as a
function of radial coordinate.

Figure 2. Entropy density as a
function of radial coordinate.

Substituing (7) in (6), we obtain an expression for the entropy up to an
additive constant. We then estimate the entropy density for the matter inside
the black hole obtaining:

s

sR/2
=

(ρ/ρmax)[1 + α(ρ/ρmax)− (α+ 1)(ρ/ρmax)
3]−1/3

0.2076e(2/3)
∫ ρ
0
αdρ[ρmax+αρ−(α+1)(ρ3/ρ2max)]

−1
. (10)

In order to calculate the speed of sound as a function of the energy density,
we solve (v/c)2 = dp/dρ:

(v

c

)2
= 2e−8r3/R3

[

α− 2(α+ 1)e−16r3/R3
]

. (11)
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Figure 3. Velocity of sound as
a function of radial coordinate.

Figure 4. Pressure as a func-
tion of radial coordinate.

The result is depicted in Figure 3. Substituing (5) in (2), we obtain an expression
for the pressure as a function of the radial coordinate. The result is shown in
Figure 4.

3. Discussion

The results of the previous section show that new interesting features arise in
this model.

In Fig. 1 we observe that the temperature tends to absolute zero close to
the core. Furthermore, from Fig. 2 we can see that the entropy density diverges
at the origin. This behaviour can be understood as the impossibility of the
system to access to different macrostates. In other words, there is no space
of microstates compatible with the macrostate of the system. Hence, standard
entropy cannot be define at r=0, since statistical mechanics breaks down there.

From Fig. 3, we see that the sound speed is zero for the same value of r at
which the pressure is maximun. In addition, the speed of sound takes complex
values in the region r < 0.4R. The latter can be derived from the negative slope
of the state function shown in Fig. 4. The sound waves cannot propagate in the
region r < 0.4R because a variation in pressure causes an expansion rather than
a compression of the fluid. Because of the repulsive behaviour of the matter,
this region is opaque to sound waves.

We also find that the specific heat is not defined for the same value of r
where the sound speed equals zero and the density entropy has a local maximun.
This suggests a possible region of instability for the normal matter field. In a
forthcoming work we will address the study of the stability in the region where
the propagation of sound waves is possible.
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